3、普朗克关于黑体辐射的工作 用热力学原理讨论黑体辐射的能谱,早在1859年就由基尔霍夫开始,瑞利和金斯用经典理论推导,将某一频率区域辐射光波的自由度乘以单位自由度的平均能量kT/2,应当得到能谱。由于自由度数目与频率ν2dν成正比,因此经典理论的能谱在紫外区发散。 普朗克于1900年在分析黑体辐射实验数据时,根据斯特藩经验公式,作出了光辐射能量与频率成正比以及按照量子的而非经典连续形式辐射的假定,并依据玻尔兹曼的统计力学推出了和实验结果一致的能谱曲线(见图3,E=hν,h=6.625×10—34焦耳·秒,为普朗克常数)。 图3 普朗克的理论虽然能符合实验结果,但是在相当长的时间内不为人们理解和重视,普朗克本人对量子的假定也感到迷惑不解。1901年他曾描述∶“…the whole procedure was an act of despair because a theoretical interpretation had to be found at any price, no matter how high that might be.(…整个过程令人绝望,因为人们必须不惜代价找到一个合理的理论解释,不管要付出多大代价。)” 他还写道∶“I tried immediately to weld the elementary quantum of action somehow in the framework of classical theory. But in the face of all such attempts this constant showed itself to be obdurate… My futile attempts to put the elementary quantum of action into the classical theory continued for a number of years and they cost me a great deal of effort.(我立即试图把基本的作用量子纳入经典的框架。但所有的尝试结果都是冥顽不灵的…。我这种把基本作用量子放入经典理论的无效的想法持续了好几年,并花费了我大量的精力。)” 爱因斯坦最早接受了量子的观念,1905年他在其著名的讨论光电效应的文章中,提出光在传播过程中是波动,而在与物质相互作用时是粒子的看法,应用光量子的观念解释光电效应获得了成功。量子论的观念开始在物理界传播开来,但是真正理解它的物理学家仍然很少,怀疑者很多。 历史上曾经对光是波动还是粒子有过长期的争论。牛顿主张的光的粒子说和惠更斯(Huygens)主张的光的波动说进行了激烈的争论,由于牛顿的学术地位,粒子说在18世纪前一直占据统治地位,直到1801年杨(T. Young)以双缝干涉实验证明了波动说,争论方告一段落。以后麦克斯韦导出电磁波,并由光速和电磁波速度相等说明光也是电磁波,光的波动说得到了电磁场理论的支持。爱因斯坦在1924年指出,“现在有两种光的理论,正如人们今天必须承认,这两种理论都是不可缺少的。尽管一部分理论物理学家经过了二十多年的巨大努力仍没有找到两者之间的逻辑联系。” 在解释物性的经验规律中,虽然发展很慢,量子论仍然逐步取得进展。固体比热在室温以上是一常数,由声波每一自由度的平均能量与kT成正比所决定,但低温的比热与此偏离。1912年,德拜根据爱因斯坦在1907年的一个想法计算了固体的比热,假定声波的能量也和其频率成正比,比率常数也为普朗克常数,得到在低温和高温下都符合实验的结果。德拜的工作暗示了不仅光波带有量子的性质,物质的波动也同样带有量子的性质。波的频率和能量的关系是普适的。可惜这一发现未得到当时人们的重视,可见不相信量子论的思想在那时的物理界仍然占据统治地位,使得物质波的思想晚了11年才被再次提出。1913年,玻尔将量子论应用于原子结构,假定原子内电子的角动量和轨道是量子化的,电子在不同能量的轨道上跃迁产生或吸收具有与能量差相同能量的光量子。玻尔的原子模型给出的谱线符合实验的巴耳末经验公式,又解决了电子运动的稳定性问题,取得了成功。以后许多人应用玻尔模型讨论各种物质的光谱,取得了部分的成功。玻尔模型的成功大大推动了量子论的发展,但是玻尔模型假定的正确性一直是受关注的重要问题,同时它也不能解释光谱的强度。 到20世纪20年代,一批在量子论提出前后出生的年轻物理学家成长起来,从1922年开始,量子论才有一个飞速的发展,短短三四年内就奠定了量子力学的基础和数学框架。正如普朗克指出,“一个重要的科学发现并不是经过慢慢地说服和改变它的反对者们而被承认,而是随着反对者们慢慢地死去后被得到公认”。
4、1923年后的10年内量子力学获得飞速发展 1923年,德布罗意在其博士论文中提出了电子也具有波动性的建议;1924年,泡利提出了不相容原理;1924年,玻色和爱因斯坦引进了玻色-爱因斯坦(Bose-Einstein)统计;1925年,乌伦贝克(G. E. Uhlenbeck)和古德斯密特(S. A. Goudsmit)提出了电子自旋的建议;1925年,海森伯、玻恩和约尔丹(E. P. Jordan)发表量子矩阵力学;1926年,薛定谔提出波动方程,发表量子波动力学1926年,薛定谔证明量子矩阵力学和量子波动力学在数学上等价;1926年,克莱因(O. B. Klein)和戈登(W. Gordon)提出相对论波动方程;1926年,费米发现自旋和统计的联系;1926年,狄拉克引进费米-狄拉克统计;1927年,戴维孙(C. J. Davission)、革末(L. H. Germer)和汤姆孙(G. P. Thomson)的实验证明电子的波动性;1927年,海森伯提出测不准关系式;1927年,玻恩提出波函数的统计解释;1928年,狄拉克发表电子的相对论方程;1930年,狄拉克引进电子空穴;1931年,泡利提出中微子假说;1931年,泡令(L. C. Pauling)发现化学共振键;1932年,查德威克(J. Chadwick)发现中子;1932年,海森伯引进同位旋概念,提出原子核的核子模型;1932年,安德森(C. D. Anderson)发现正电子。 值得指出的是,量子力学的发现者们多数虽然年轻,但都具有深厚的理论和实验的知识。他们了解光谱和各种物性的实验进展和状况,对分析动力学、电磁场理论、热力学和统计物理都有深刻的领会。他们还掌握了数学的最新发展,如希尔伯特(Hilbert)空间。这说明,只有掌握人类创造的全部知识财富,才能产生革命性的创新。
5、不同意见的争论是发展科学的重要推动力 尽管量子力学的数学结构严谨,在解释一系列实验现象上取得了完全成功,但是从它诞生的时刻开始,对它的物理解释和理解就存在不同的意见和争论,一批为量子力学的发展作出过重要贡献的物理学家,如爱因斯坦、薛定谔等始终怀疑量子力学,认为它不是最终的理论,而另一批物理学家,以玻尔、海森伯为首则持完全相反的意见。 5.1 争论的焦点 争论的焦点在于波函数的解释,它是不是物理的实在?如何理解玻恩提出的波函数的统计解释?量子力学能否对物理事件的状态和运动过程作完整的描述?量子力学是最终的物理理论还是阶段性的现象性理论?这些问题在历届Solvay会议上双方的争论都进行得很激烈。玻尔在1927年的Solvay会议上指出∶“任何人如果他没有被量子物理所震惊,那么他就不理解量子物理。” 5.2 两种态度 5.2.1 反对者的意见 爱因斯坦在1926年12月4日给玻恩的信中写道∶“The theory yields a lot,but it hardly brings us any closer to the secret of the old one。In any case I am convinced that he does not throw dice. [尽管这个理论(量子理论)给出很多结果,但它几乎没有使我们更接近上帝的秘密。在任何情况下,我坚信,他不会是掷骰子。] ”薛定谔在1926年指出∶“I knew of(Heisenberg‘s)theory,of course,but I felt discouraged,not to say repelled,by the methods of transcendental algebra,which appeared difficult to me,and by the lack of visualizability. (我当然知道海森伯的理论,但那令人难懂的超凡的代数以及那缺乏形象性的方法使我感到泄气,虽说还不是完全排斥。)” 5.2.2 支持者的回答 海森伯和玻恩在投给1927年Solvay会议的论文中指出∶“We regard quantum mechanics as a complete theory for which the fundamental physical and mathematical hypotheses are no longer susceptible of modification. (我们把量子力学看作是一个完整的理论,它基本的物理和数学前提不容再被修改。)” 海森伯指出∶“I had no faith in a theory that ran completely counter to our Copenhagen conception.(我不相信一个完全与哥本哈根概念相抵触的理论。)” 1926年海森伯在给泡利的信中写道∶“The more I think about the physical portion of Schrodinger's theory, the more repulsive I find it …What Schrodinger writes about the visualizability of his theory is probably not quite right, in other words it's crap.(我对薛定谔理论的物理部分想得越多,发现它越让人感到不满意...... 薛定谔所写的关于他的理论的直观形象性也许不是那么正确,换句话说,那是胡说八道。)” 5.3 两种基本观点 爱因斯坦的观点∶“Physics is an attempt conceptually to grasp reality as it is thought independently of its being observed. In this sense one speaks of 'physical reality’.(物理是试图在概念上去抓住事物的真实性,而这个真实性应被认为是与观察没有关系的。在这个意义上,人们称之为物理的真实性。)” 玻尔的观点∶"There is no quantum world.There is only an abstract quantum description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature.(这里没有量子世界。只有一个抽象的量子描述。认为物理要做的事就是弄清楚自然界是怎样的,那是错误的观点。物理关心的只是我们对自然界能说些什么。)” 海森伯的观点∶“What we observe is not nature itself, but nature exposed to our method of questioning.(我们所观察到的不是自然界本身,而是在我们探讨问题所用的方法下所显现的自然界。)” 玻恩的观点∶"We have sought for firm ground and found none. The deeper we penetrate, the more restless becomes the universe; all is rushing about and vibrating in a wild dance.(我们试图寻找到更坚实的基础,但没有找到任何东西。我们钻研得越深刻,宇宙就显得越不安宁,所有事物就像在狂欢舞会上,那么激动和摆动。)”,“No language which lends itself to visualizability can describe quantum jumps.(没有任何语言可以用来形象地描述量子跃迁。)” 这样的争论即使在同一阵营内也是非常激烈的.海森伯回忆说∶"Since my talks with Bohr often continued till long after midnight and did not produce a satisfactory conclusion, …both of us became utterly exhausted and rather tense.(我与玻尔的讨论经常进行到深夜以后很久,还没有得到一个满意的结论,…我们俩人都完全变得筋疲力尽,并且气氛相当紧张。)”据说在1927年最初的几个月,海森伯与玻尔的争论变得相当剧烈,以致于在某一点上海森伯争论得都要流出眼泪,甚至想用尖锐的语言去伤害玻尔。 5.4 物理学家普遍的困惑 著名理论物理学家、诺贝尔奖获得者费恩曼指出∶"There was a time when the newspapers said that only twelve men understood the theory of relativity. I do not believe there ever was such a time. There might have been a time when only one man did, because he was the only guy who caught on, before he wrote his paper. But after people read the paper a lot of people understood the theory of relativity in some way or other, certainly more than twelve. On the other hand, I think I can safely say that nobody understands quantum mechanics.(在某个时候报纸上曾报道过只有12个人理解相对论。我不相信有这样的时候,可能有一个人发现了相对论,写论文时,只有他一个人理解相对论。以后当人们读了他的文章,许多人就以不同方式理解了相对论,当然多于12个人。另一方面,我认为我能保证地说,没有人理解量子力学。)” 著名理论物理学家、诺贝尔奖获得者盖尔曼指出∶"All of modern physics is governed by that magnificent and thoroughly confusing discipline called quantum mechanics… It has survived all tests and there is no reason to believe that there is any flaw in it… We all know how to use it and how to apply it to problems; and so we have learned to live with the fact that nobody can understand it.(现代物理的一切都是由所谓的量子力学这个美妙惊人而完全令人迷惑的原理支配的…。它从所有的实验检测中幸存下来。没有理由认为量子力学存在任何缺陷。我们都知道如何使用它以及如何应用它来解决问题。尽管没有人能理解量子力学,我们已经适应这种情况了。)” 在量子力学看来,相互不对易的物理量是不可能同时准确测量的。海森伯测不准关系是量子力学特有而不能违背的关系∶在同一时刻,位置测量得越精确,所测动量就越不精确,反之亦然。爱因斯坦曾设计了许多假想的实验,希望同时准确测定粒子的位置和动量,但是和玻尔争论以后都找到了实验不能成立的原因。
7、贝尔(J. S. Bell)定理 1964年,贝尔提出了一个重要的定理,能够判别量子力学的背后是不是存在定域的、能同时描述不对易物理量状态的、包含隐匿参数的类似经典力学的理论。他指出,若这种理论存在,在EPR佯谬中的两个彼此缠绕而空间分开的状态之间的关联将小于由量子力学所预计的数值。对贝尔定律的实验检验(1982年)证实了量子力学的正确,量子力学背后不可能存在定域的、含有隐匿参数的类似经典的理论。