思想的田园分享 http://blog.sciencenet.cn/u/wangfangnk

博文

转:国务院:促进大数据发展行动纲要

已有 5406 次阅读 2015-9-14 08:45 |个人分类:电子政务|系统分类:博客资讯

国务院关于印发促进大数据发展
行动纲要的通知
国发〔2015〕50 号

各省、自治区、直辖市人民政府,国务院各部委、各直属机构:
  现将《促进大数据发展行动纲要》印发给你们,请认真贯彻落实。

                               国务院
                             2015年8月31日

  (本文有删减)

 

促进大数据发展行动纲要

  大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。
  信息技术与经济社会的交汇融合引发了数据迅猛增长,数据已成为国家基础性战略资源,大数据正日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。目前,我国在大数据发展和应用方面已具备一定基础,拥有市场优势和发展潜力,但也存在政府数据开放共享不足、产业基础薄弱、缺乏顶层设计和统筹规划、法律法规建设滞后、创新应用领域不广等问题,亟待解决。为贯彻落实党中央、国务院决策部署,全面推进我国大数据发展和应用,加快建设数据强国,特制定本行动纲要。
  一、发展形势和重要意义
  全球范围内,运用大数据推动经济发展、完善社会治理、提升政府服务和监管能力正成为趋势,有关发达国家相继制定实施大数据战略性文件,大力推动大数据发展和应用。目前,我国互联网、移动互联网用户规模居全球第一,拥有丰富的数据资源和应用市场优势,大数据部分关键技术研发取得突破,涌现出一批互联网创新企业和创新应用,一些地方政府已启动大数据相关工作。坚持创新驱动发展,加快大数据部署,深化大数据应用,已成为稳增长、促改革、调结构、惠民生和推动政府治理能力现代化的内在需要和必然选择。
  (一)大数据成为推动经济转型发展的新动力。以数据流引领技术流、物质流、资金流、人才流,将深刻影响社会分工协作的组织模式,促进生产组织方式的集约和创新。大数据推动社会生产要素的网络化共享、集约化整合、协作化开发和高效化利用,改变了传统的生产方式和经济运行机制,可显著提升经济运行水平和效率。大数据持续激发商业模式创新,不断催生新业态,已成为互联网等新兴领域促进业务创新增值、提升企业核心价值的重要驱动力。大数据产业正在成为新的经济增长点,将对未来信息产业格局产生重要影响。
  (二)大数据成为重塑国家竞争优势的新机遇。在全球信息化快速发展的大背景下,大数据已成为国家重要的基础性战略资源,正引领新一轮科技创新。充分利用我国的数据规模优势,实现数据规模、质量和应用水平同步提升,发掘和释放数据资源的潜在价值,有利于更好发挥数据资源的战略作用,增强网络空间数据主权保护能力,维护国家安全,有效提升国家竞争力。
  (三)大数据成为提升政府治理能力的新途径。大数据应用能够揭示传统技术方式难以展现的关联关系,推动政府数据开放共享,促进社会事业数据融合和资源整合,将极大提升政府整体数据分析能力,为有效处理复杂社会问题提供新的手段。建立“用数据说话、用数据决策、用数据管理、用数据创新”的管理机制,实现基于数据的科学决策,将推动政府管理理念和社会治理模式进步,加快建设与社会主义市场经济体制和中国特色社会主义事业发展相适应的法治政府、创新政府、廉洁政府和服务型政府,逐步实现政府治理能力现代化。
  二、指导思想和总体目标
  (一)指导思想。深入贯彻党的十八大和十八届二中、三中、四中全会精神,按照党中央、国务院决策部署,发挥市场在资源配置中的决定性作用,加强顶层设计和统筹协调,大力推动政府信息系统和公共数据互联开放共享,加快政府信息平台整合,消除信息孤岛,推进数据资源向社会开放,增强政府公信力,引导社会发展,服务公众企业;以企业为主体,营造宽松公平环境,加大大数据关键技术研发、产业发展和人才培养力度,着力推进数据汇集和发掘,深化大数据在各行业创新应用,促进大数据产业健康发展;完善法规制度和标准体系,科学规范利用大数据,切实保障数据安全。通过促进大数据发展,加快建设数据强国,释放技术红利、制度红利和创新红利,提升政府治理能力,推动经济转型升级。
  (二)总体目标。立足我国国情和现实需要,推动大数据发展和应用在未来5—10年逐步实现以下目标:
  打造精准治理、多方协作的社会治理新模式。将大数据作为提升政府治理能力的重要手段,通过高效采集、有效整合、深化应用政府数据和社会数据,提升政府决策和风险防范水平,提高社会治理的精准性和有效性,增强乡村社会治理能力;助力简政放权,支持从事前审批向事中事后监管转变,推动商事制度改革;促进政府监管和社会监督有机结合,有效调动社会力量参与社会治理的积极性。2017年底前形成跨部门数据资源共享共用格局。
  建立运行平稳、安全高效的经济运行新机制。充分运用大数据,不断提升信用、财政、金融、税收、农业、统计、进出口、资源环境、产品质量、企业登记监管等领域数据资源的获取和利用能力,丰富经济统计数据来源,实现对经济运行更为准确的监测、分析、预测、预警,提高决策的针对性、科学性和时效性,提升宏观调控以及产业发展、信用体系、市场监管等方面管理效能,保障供需平衡,促进经济平稳运行。
  构建以人为本、惠及全民的民生服务新体系。围绕服务型政府建设,在公用事业、市政管理、城乡环境、农村生活、健康医疗、减灾救灾、社会救助、养老服务、劳动就业、社会保障、文化教育、交通旅游、质量安全、消费维权、社区服务等领域全面推广大数据应用,利用大数据洞察民生需求,优化资源配置,丰富服务内容,拓展服务渠道,扩大服务范围,提高服务质量,提升城市辐射能力,推动公共服务向基层延伸,缩小城乡、区域差距,促进形成公平普惠、便捷高效的民生服务体系,不断满足人民群众日益增长的个性化、多样化需求。
  开启大众创业、万众创新的创新驱动新格局。形成公共数据资源合理适度开放共享的法规制度和政策体系,2018年底前建成国家政府数据统一开放平台,率先在信用、交通、医疗、卫生、就业、社保、地理、文化、教育、科技、资源、农业、环境、安监、金融、质量、统计、气象、海洋、企业登记监管等重要领域实现公共数据资源合理适度向社会开放,带动社会公众开展大数据增值性、公益性开发和创新应用,充分释放数据红利,激发大众创业、万众创新活力。
  培育高端智能、新兴繁荣的产业发展新生态。推动大数据与云计算、物联网、移动互联网等新一代信息技术融合发展,探索大数据与传统产业协同发展的新业态、新模式,促进传统产业转型升级和新兴产业发展,培育新的经济增长点。形成一批满足大数据重大应用需求的产品、系统和解决方案,建立安全可信的大数据技术体系,大数据产品和服务达到国际先进水平,国内市场占有率显著提高。培育一批面向全球的骨干企业和特色鲜明的创新型中小企业。构建形成政产学研用多方联动、协调发展的大数据产业生态体系。
  三、主要任务
  (一)加快政府数据开放共享,推动资源整合,提升治理能力。
  1.大力推动政府部门数据共享。加强顶层设计和统筹规划,明确各部门数据共享的范围边界和使用方式,厘清各部门数据管理及共享的义务和权利,依托政府数据统一共享交换平台,大力推进国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等国家基础数据资源,以及金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统跨部门、跨区域共享。加快各地区、各部门、各有关企事业单位及社会组织信用信息系统的互联互通和信息共享,丰富面向公众的信用信息服务,提高政府服务和监管水平。结合信息惠民工程实施和智慧城市建设,推动中央部门与地方政府条块结合、联合试点,实现公共服务的多方数据共享、制度对接和协同配合。
  2.稳步推动公共数据资源开放。在依法加强安全保障和隐私保护的前提下,稳步推动公共数据资源开放。推动建立政府部门和事业单位等公共机构数据资源清单,按照“增量先行”的方式,加强对政府部门数据的国家统筹管理,加快建设国家政府数据统一开放平台。制定公共机构数据开放计划,落实数据开放和维护责任,推进公共机构数据资源统一汇聚和集中向社会开放,提升政府数据开放共享标准化程度,优先推动信用、交通、医疗、卫生、就业、社保、地理、文化、教育、科技、资源、农业、环境、安监、金融、质量、统计、气象、海洋、企业登记监管等民生保障服务相关领域的政府数据集向社会开放。建立政府和社会互动的大数据采集形成机制,制定政府数据共享开放目录。通过政务数据公开共享,引导企业、行业协会、科研机构、社会组织等主动采集并开放数据。

 

专栏1 政府数据资源共享开放工程

  推动政府数据资源共享。制定政府数据资源共享管理办法,整合政府部门公共数据资源,促进互联互通,提高共享能力,提升政府数据的一致性和准确性。2017年底前,明确各部门数据共享的范围边界和使用方式,跨部门数据资源共享共用格局基本形成。
  形成政府数据统一共享交换平台。充分利用统一的国家电子政务网络,构建跨部门的政府数据统一共享交换平台,到2018年,中央政府层面实现数据统一共享交换平台的全覆盖,实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。
  形成国家政府数据统一开放平台。建立政府部门和事业单位等公共机构数据资源清单,制定实施政府数据开放共享标准,制定数据开放计划。2018年底前,建成国家政府数据统一开放平台。2020年底前,逐步实现信用、交通、医疗、卫生、就业、社保、地理、文化、教育、科技、资源、农业、环境、安监、金融、质量、统计、气象、海洋、企业登记监管等民生保障服务相关领域的政府数据集向社会开放。

 

  3.统筹规划大数据基础设施建设。结合国家政务信息化工程建设规划,统筹政务数据资源和社会数据资源,布局国家大数据平台、数据中心等基础设施。加快完善国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等基础信息资源和健康、就业、社保、能源、信用、统计、质量、国土、农业、城乡建设、企业登记监管等重要领域信息资源,加强与社会大数据的汇聚整合和关联分析。推动国民经济动员大数据应用。加强军民信息资源共享。充分利用现有企业、政府等数据资源和平台设施,注重对现有数据中心及服务器资源的改造和利用,建设绿色环保、低成本、高效率、基于云计算的大数据基础设施和区域性、行业性数据汇聚平台,避免盲目建设和重复投资。加强对互联网重要数据资源的备份及保护。

 

专栏2 国家大数据资源统筹发展工程

  整合各类政府信息平台和信息系统。严格控制新建平台,依托现有平台资源,在地市级以上(含地市级)政府集中构建统一的互联网政务数据服务平台和信息惠民服务平台,在基层街道、社区统一应用,并逐步向农村特别是农村社区延伸。除国务院另有规定外,原则上不再审批有关部门、地市级以下(不含地市级)政府新建孤立的信息平台和信息系统。到2018年,中央层面构建形成统一的互联网政务数据服务平台;国家信息惠民试点城市实现基础信息集中采集、多方利用,实现公共服务和社会信息服务的全人群覆盖、全天候受理和“一站式”办理。
  整合分散的数据中心资源。充分利用现有政府和社会数据中心资源,运用云计算技术,整合规模小、效率低、能耗高的分散数据中心,构建形成布局合理、规模适度、保障有力、绿色集约的政务数据中心体系。统筹发挥各部门已建数据中心的作用,严格控制部门新建数据中心。开展区域试点,推进贵州等大数据综合试验区建设,促进区域性大数据基础设施的整合和数据资源的汇聚应用。
  加快完善国家基础信息资源体系。加快建设完善国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等基础信息资源。依托现有相关信息系统,逐步完善健康、社保、就业、能源、信用、统计、质量、国土、农业、城乡建设、企业登记监管等重要领域信息资源。到2018年,跨部门共享校核的国家人口基础信息库、法人单位信息资源库、自然资源和空间地理基础信息库等国家基础信息资源体系基本建成,实现与各领域信息资源的汇聚整合和关联应用。
  加强互联网信息采集利用。加强顶层设计,树立国际视野,充分利用已有资源,加强互联网信息采集、保存和分析能力建设,制定完善互联网信息保存相关法律法规,构建互联网信息保存和信息服务体系。

 

  4.支持宏观调控科学化。建立国家宏观调控数据体系,及时发布有关统计指标和数据,强化互联网数据资源利用和信息服务,加强与政务数据资源的关联分析和融合利用,为政府开展金融、税收、审计、统计、农业、规划、消费、投资、进出口、城乡建设、劳动就业、收入分配、电力及产业运行、质量安全、节能减排等领域运行动态监测、产业安全预测预警以及转变发展方式分析决策提供信息支持,提高宏观调控的科学性、预见性和有效性。
  5.推动政府治理精准化。在企业监管、质量安全、节能降耗、环境保护、食品安全、安全生产、信用体系建设、旅游服务等领域,推动有关政府部门和企事业单位将市场监管、检验检测、违法失信、企业生产经营、销售物流、投诉举报、消费维权等数据进行汇聚整合和关联分析,统一公示企业信用信息,预警企业不正当行为,提升政府决策和风险防范能力,支持加强事中事后监管和服务,提高监管和服务的针对性、有效性。推动改进政府管理和公共治理方式,借助大数据实现政府负面清单、权力清单和责任清单的透明化管理,完善大数据监督和技术反腐体系,促进政府简政放权、依法行政。
  6.推进商事服务便捷化。加快建立公民、法人和其他组织统一社会信用代码制度,依托全国统一的信用信息共享交换平台,建设企业信用信息公示系统和“信用中国”网站,共享整合各地区、各领域信用信息,为社会公众提供查询注册登记、行政许可、行政处罚等各类信用信息的一站式服务。在全面实行工商营业执照、组织机构代码证和税务登记证“三证合一”、“一照一码”登记制度改革中,积极运用大数据手段,简化办理程序。建立项目并联审批平台,形成网上审批大数据资源库,实现跨部门、跨层级项目审批、核准、备案的统一受理、同步审查、信息共享、透明公开。鼓励政府部门高效采集、有效整合并充分运用政府数据和社会数据,掌握企业需求,推动行政管理流程优化再造,在注册登记、市场准入等商事服务中提供更加便捷有效、更有针对性的服务。利用大数据等手段,密切跟踪中小微企业特别是新设小微企业运行情况,为完善相关政策提供支持。
  7.促进安全保障高效化。加强有关执法部门间的数据流通,在法律许可和确保安全的前提下,加强对社会治理相关领域数据的归集、发掘及关联分析,强化对妥善应对和处理重大突发公共事件的数据支持,提高公共安全保障能力,推动构建智能防控、综合治理的公共安全体系,维护国家安全和社会安定。

 

专栏3 政府治理大数据工程

  推动宏观调控决策支持、风险预警和执行监督大数据应用。统筹利用政府和社会数据资源,探索建立国家宏观调控决策支持、风险预警和执行监督大数据应用体系。到2018年,开展政府和社会合作开发利用大数据试点,完善金融、税收、审计、统计、农业、规划、消费、投资、进出口、城乡建设、劳动就业、收入分配、电力及产业运行、质量安全、节能减排等领域国民经济相关数据的采集和利用机制,推进各级政府按照统一体系开展数据采集和综合利用,加强对宏观调控决策的支撑。
  推动信用信息共享机制和信用信息系统建设。加快建立统一社会信用代码制度,建立信用信息共享交换机制。充分利用社会各方面信息资源,推动公共信用数据与互联网、移动互联网、电子商务等数据的汇聚整合,鼓励互联网企业运用大数据技术建立市场化的第三方信用信息共享平台,使政府主导征信体系的权威性和互联网大数据征信平台的规模效应得到充分发挥,依托全国统一的信用信息共享交换平台,建设企业信用信息公示系统,实现覆盖各级政府、各类别信用主体的基础信用信息共享,初步建成社会信用体系,为经济高效运行提供全面准确的基础信用信息服务。
  建设社会治理大数据应用体系。到2018年,围绕实施区域协调发展、新型城镇化等重大战略和主体功能区规划,在企业监管、质量安全、质量诚信、节能降耗、环境保护、食品安全、安全生产、信用体系建设、旅游服务等领域探索开展一批应用试点,打通政府部门、企事业单位之间的数据壁垒,实现合作开发和综合利用。实时采集并汇总分析政府部门和企事业单位的市场监管、检验检测、违法失信、企业生产经营、销售物流、投诉举报、消费维权等数据,有效促进各级政府社会治理能力提升。

 

  8.加快民生服务普惠化。结合新型城镇化发展、信息惠民工程实施和智慧城市建设,以优化提升民生服务、激发社会活力、促进大数据应用市场化服务为重点,引导鼓励企业和社会机构开展创新应用研究,深入发掘公共服务数据,在城乡建设、人居环境、健康医疗、社会救助、养老服务、劳动就业、社会保障、质量安全、文化教育、交通旅游、消费维权、城乡服务等领域开展大数据应用示范,推动传统公共服务数据与互联网、移动互联网、可穿戴设备等数据的汇聚整合,开发各类便民应用,优化公共资源配置,提升公共服务水平。

 

专栏4 公共服务大数据工程

  医疗健康服务大数据。构建电子健康档案、电子病历数据库,建设覆盖公共卫生、医疗服务、医疗保障、药品供应、计划生育和综合管理业务的医疗健康管理和服务大数据应用体系。探索预约挂号、分级诊疗、远程医疗、检查检验结果共享、防治结合、医养结合、健康咨询等服务,优化形成规范、共享、互信的诊疗流程。鼓励和规范有关企事业单位开展医疗健康大数据创新应用研究,构建综合健康服务应用。
  社会保障服务大数据。建设由城市延伸到农村的统一社会救助、社会福利、社会保障大数据平台,加强与相关部门的数据对接和信息共享,支撑大数据在劳动用工和社保基金监管、医疗保险对医疗服务行为监控、劳动保障监察、内控稽核以及人力资源社会保障相关政策制定和执行效果跟踪评价等方面的应用。利用大数据创新服务模式,为社会公众提供更为个性化、更具针对性的服务。
  教育文化大数据。完善教育管理公共服务平台,推动教育基础数据的伴随式收集和全国互通共享。建立各阶段适龄入学人口基础数据库、学生基础数据库和终身电子学籍档案,实现学生学籍档案在不同教育阶段的纵向贯通。推动形成覆盖全国、协同服务、全网互通的教育资源云服务体系。探索发挥大数据对变革教育方式、促进教育公平、提升教育质量的支撑作用。加强数字图书馆、档案馆、博物馆、美术馆和文化馆等公益设施建设,构建文化传播大数据综合服务平台,传播中国文化,为社会提供文化服务。
  交通旅游服务大数据。探索开展交通、公安、气象、安监、地震、测绘等跨部门、跨地域数据融合和协同创新。建立综合交通服务大数据平台,共同利用大数据提升协同管理和公共服务能力,积极吸引社会优质资源,利用交通大数据开展出行信息服务、交通诱导等增值服务。建立旅游投诉及评价全媒体交互中心,实现对旅游城市、重点景区游客流量的监控、预警和及时分流疏导,为规范市场秩序、方便游客出行、提升旅游服务水平、促进旅游消费和旅游产业转型升级提供有力支撑。

 

  (二)推动产业创新发展,培育新兴业态,助力经济转型。
  1.发展工业大数据。
推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂。建立面向不同行业、不同环节的工业大数据资源聚合和分析应用平台。抓住互联网跨界融合机遇,促进大数据、物联网、云计算和三维(3D)打印技术、个性化定制等在制造业全产业链集成运用,推动制造模式变革和工业转型升级。
  2.发展新兴产业大数据。大力培育互联网金融、数据服务、数据探矿、数据化学、数据材料、数据制药等新业态,提升相关产业大数据资源的采集获取和分析利用能力,充分发掘数据资源支撑创新的潜力,带动技术研发体系创新、管理方式变革、商业模式创新和产业价值链体系重构,推动跨领域、跨行业的数据融合和协同创新,促进战略性新兴产业发展、服务业创新发展和信息消费扩大,探索形成协同发展的新业态、新模式,培育新的经济增长点。

 

专栏5 工业和新兴产业大数据工程

  工业大数据应用。利用大数据推动信息化和工业化深度融合,研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用,研发面向不同行业、不同环节的大数据分析应用平台,选择典型企业、重点行业、重点地区开展工业企业大数据应用项目试点,积极推动制造业网络化和智能化。
  服务业大数据应用。利用大数据支持品牌建立、产品定位、精准营销、认证认可、质量诚信提升和定制服务等,研发面向服务业的大数据解决方案,扩大服务范围,增强服务能力,提升服务质量,鼓励创新商业模式、服务内容和服务形式。
  培育数据应用新业态。积极推动不同行业大数据的聚合、大数据与其他行业的融合,大力培育互联网金融、数据服务、数据处理分析、数据影视、数据探矿、数据化学、数据材料、数据制药等新业态。
  电子商务大数据应用。推动大数据在电子商务中的应用,充分利用电子商务中形成的大数据资源为政府实施市场监管和调控服务,电子商务企业应依法向政府部门报送数据。

 

  3.发展农业农村大数据。构建面向农业农村的综合信息服务体系,为农民生产生活提供综合、高效、便捷的信息服务,缩小城乡数字鸿沟,促进城乡发展一体化。加强农业农村经济大数据建设,完善村、县相关数据采集、传输、共享基础设施,建立农业农村数据采集、运算、应用、服务体系,强化农村生态环境治理,增强乡村社会治理能力。统筹国内国际农业数据资源,强化农业资源要素数据的集聚利用,提升预测预警能力。整合构建国家涉农大数据中心,推进各地区、各行业、各领域涉农数据资源的共享开放,加强数据资源发掘运用。加快农业大数据关键技术研发,加大示范力度,提升生产智能化、经营网络化、管理高效化、服务便捷化能力和水平。

 

专栏6 现代农业大数据工程

  农业农村信息综合服务。充分利用现有数据资源,完善相关数据采集共享功能,完善信息进村入户村级站的数据采集和信息发布功能,建设农产品全球生产、消费、库存、进出口、价格、成本等数据调查分析系统工程,构建面向农业农村的综合信息服务平台,涵盖农业生产、经营、管理、服务和农村环境整治等环节,集合公益服务、便民服务、电子商务和网络服务,为农业农村农民生产生活提供综合、高效、便捷的信息服务,加强全球农业调查分析,引导国内农产品生产和消费,完善农产品价格形成机制,缩小城乡数字鸿沟,促进城乡发展一体化。
  农业资源要素数据共享。利用物联网、云计算、卫星遥感等技术,建立我国农业耕地、草原、林地、水利设施、水资源、农业设施设备、新型经营主体、农业劳动力、金融资本等资源要素数据监测体系,促进农业环境、气象、生态等信息共享,构建农业资源要素数据共享平台,为各级政府、企业、农户提供农业资源数据查询服务,鼓励各类市场主体充分发掘平台数据,开发测土配方施肥、统防统治、农业保险等服务。
  农产品质量安全信息服务。建立农产品生产的生态环境、生产资料、生产过程、市场流通、加工储藏、检验检测等数据共享机制,推进数据实现自动化采集、网络化传输、标准化处理和可视化运用,提高数据的真实性、准确性、及时性和关联性,与农产品电子商务等交易平台互联共享,实现各环节信息可查询、来源可追溯、去向可跟踪、责任可追究,推进实现种子、农药、化肥等重要生产资料信息可追溯,为生产者、消费者、监管者提供农产品质量安全信息服务,促进农产品消费安全。

 

  4.发展万众创新大数据。适应国家创新驱动发展战略,实施大数据创新行动计划,鼓励企业和公众发掘利用开放数据资源,激发创新创业活力,促进创新链和产业链深度融合,推动大数据发展与科研创新有机结合,形成大数据驱动型的科研创新模式,打通科技创新和经济社会发展之间的通道,推动万众创新、开放创新和联动创新。

 

专栏7 万众创新大数据工程

  大数据创新应用。通过应用创新开发竞赛、服务外包、社会众包、助推计划、补助奖励、应用培训等方式,鼓励企业和公众发掘利用开放数据资源,激发创新创业活力。
  大数据创新服务。面向经济社会发展需求,研发一批大数据公共服务产品,实现不同行业、领域大数据的融合,扩大服务范围、提高服务能力。
  发展科学大数据。积极推动由国家公共财政支持的公益性科研活动获取和产生的科学数据逐步开放共享,构建科学大数据国家重大基础设施,实现对国家重要科技数据的权威汇集、长期保存、集成管理和全面共享。面向经济社会发展需求,发展科学大数据应用服务中心,支持解决经济社会发展和国家安全重大问题。
  知识服务大数据应用。利用大数据、云计算等技术,对各领域知识进行大规模整合,搭建层次清晰、覆盖全面、内容准确的知识资源库群,建立国家知识服务平台与知识资源服务中心,形成以国家平台为枢纽、行业平台为支撑,覆盖国民经济主要领域,分布合理、互联互通的国家知识服务体系,为生产生活提供精准、高水平的知识服务。提高我国知识资源的生产与供给能力。

 

  5.推进基础研究和核心技术攻关。围绕数据科学理论体系、大数据计算系统与分析理论、大数据驱动的颠覆性应用模型探索等重大基础研究进行前瞻布局,开展数据科学研究,引导和鼓励在大数据理论、方法及关键应用技术等方面展开探索。采取政产学研用相结合的协同创新模式和基于开源社区的开放创新模式,加强海量数据存储、数据清洗、数据分析发掘、数据可视化、信息安全与隐私保护等领域关键技术攻关,形成安全可靠的大数据技术体系。支持自然语言理解、机器学习、深度学习等人工智能技术创新,提升数据分析处理能力、知识发现能力和辅助决策能力。
  6.形成大数据产品体系。围绕数据采集、整理、分析、发掘、展现、应用等环节,支持大型通用海量数据存储与管理软件、大数据分析发掘软件、数据可视化软件等软件产品和海量数据存储设备、大数据一体机等硬件产品发展,带动芯片、操作系统等信息技术核心基础产品发展,打造较为健全的大数据产品体系。大力发展与重点行业领域业务流程及数据应用需求深度融合的大数据解决方案。

 

专栏8 大数据关键技术及产品研发与产业化工程

  通过优化整合后的国家科技计划(专项、基金等),支持符合条件的大数据关键技术研发。
  加强大数据基础研究。融合数理科学、计算机科学、社会科学及其他应用学科,以研究相关性和复杂网络为主,探讨建立数据科学的学科体系;研究面向大数据计算的新体系和大数据分析理论,突破大数据认知与处理的技术瓶颈;面向网络、安全、金融、生物组学、健康医疗等重点需求,探索建立数据科学驱动行业应用的模型。
  大数据技术产品研发。加大投入力度,加强数据存储、整理、分析处理、可视化、信息安全与隐私保护等领域技术产品的研发,突破关键环节技术瓶颈。到2020年,形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品。
  提升大数据技术服务能力。促进大数据与各行业应用的深度融合,形成一批代表性应用案例,以应用带动大数据技术和产品研发,形成面向各行业的成熟的大数据解决方案。

 

  7.完善大数据产业链。支持企业开展基于大数据的第三方数据分析发掘服务、技术外包服务和知识流程外包服务。鼓励企业根据数据资源基础和业务特色,积极发展互联网金融和移动金融等新业态。推动大数据与移动互联网、物联网、云计算的深度融合,深化大数据在各行业的创新应用,积极探索创新协作共赢的应用模式和商业模式。加强大数据应用创新能力建设,建立政产学研用联动、大中小企业协调发展的大数据产业体系。建立和完善大数据产业公共服务支撑体系,组建大数据开源社区和产业联盟,促进协同创新,加快计量、标准化、检验检测和认证认可等大数据产业质量技术基础建设,加速大数据应用普及。

 

专栏9 大数据产业支撑能力提升工程

  培育骨干企业。完善政策体系,着力营造服务环境优、要素成本低的良好氛围,加速培育大数据龙头骨干企业。充分发挥骨干企业的带动作用,形成大中小企业相互支撑、协同合作的大数据产业生态体系。到2020年,培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
  大数据产业公共服务。整合优质公共服务资源,汇聚海量数据资源,形成面向大数据相关领域的公共服务平台,为企业和用户提供研发设计、技术产业化、人力资源、市场推广、评估评价、认证认可、检验检测、宣传展示、应用推广、行业咨询、投融资、教育培训等公共服务。
  中小微企业公共服务大数据。整合现有中小微企业公共服务系统与数据资源,链接各省(区、市)建成的中小微企业公共服务线上管理系统,形成全国统一的中小微企业公共服务大数据平台,为中小微企业提供科技服务、综合服务、商贸服务等各类公共服务。

 

  (三)强化安全保障,提高管理水平,促进健康发展。
  1.健全大数据安全保障体系。
加强大数据环境下的网络安全问题研究和基于大数据的网络安全技术研究,落实信息安全等级保护、风险评估等网络安全制度,建立健全大数据安全保障体系。建立大数据安全评估体系。切实加强关键信息基础设施安全防护,做好大数据平台及服务商的可靠性及安全性评测、应用安全评测、监测预警和风险评估。明确数据采集、传输、存储、使用、开放等各环节保障网络安全的范围边界、责任主体和具体要求,切实加强对涉及国家利益、公共安全、商业秘密、个人隐私、军工科研生产等信息的保护。妥善处理发展创新与保障安全的关系,审慎监管,保护创新,探索完善安全保密管理规范措施,切实保障数据安全。
  2.强化安全支撑。采用安全可信产品和服务,提升基础设施关键设备安全可靠水平。建设国家网络安全信息汇聚共享和关联分析平台,促进网络安全相关数据融合和资源合理分配,提升重大网络安全事件应急处理能力;深化网络安全防护体系和态势感知能力建设,增强网络空间安全防护和安全事件识别能力。开展安全监测和预警通报工作,加强大数据环境下防攻击、防泄露、防窃取的监测、预警、控制和应急处置能力建设。

 

专栏10 网络和大数据安全保障工程

  网络和大数据安全支撑体系建设。在涉及国家安全稳定的领域采用安全可靠的产品和服务,到2020年,实现关键部门的关键设备安全可靠。完善网络安全保密防护体系。
  大数据安全保障体系建设。明确数据采集、传输、存储、使用、开放等各环节保障网络安全的范围边界、责任主体和具体要求,建设完善金融、能源、交通、电信、统计、广电、公共安全、公共事业等重要数据资源和信息系统的安全保密防护体系。
  网络安全信息共享和重大风险识别大数据支撑体系建设。通过对网络安全威胁特征、方法、模式的追踪、分析,实现对网络安全威胁新技术、新方法的及时识别与有效防护。强化资源整合与信息共享,建立网络安全信息共享机制,推动政府、行业、企业间的网络风险信息共享,通过大数据分析,对网络安全重大事件进行预警、研判和应对指挥。

 

  四、政策机制
  (一)完善组织实施机制。建立国家大数据发展和应用统筹协调机制,推动形成职责明晰、协同推进的工作格局。加强大数据重大问题研究,加快制定出台配套政策,强化国家数据资源统筹管理。加强大数据与物联网、智慧城市、云计算等相关政策、规划的协同。加强中央与地方协调,引导地方各级政府结合自身条件合理定位、科学谋划,将大数据发展纳入本地区经济社会和城镇化发展规划,制定出台促进大数据产业发展的政策措施,突出区域特色和分工,抓好措施落实,实现科学有序发展。设立大数据专家咨询委员会,为大数据发展应用及相关工程实施提供决策咨询。各有关部门要进一步统一思想,认真落实本行动纲要提出的各项任务,共同推动形成公共信息资源共享共用和大数据产业健康安全发展的良好格局。
  (二)加快法规制度建设。修订政府信息公开条例。积极研究数据开放、保护等方面制度,实现对数据资源采集、传输、存储、利用、开放的规范管理,促进政府数据在风险可控原则下最大程度开放,明确政府统筹利用市场主体大数据的权限及范围。制定政府信息资源管理办法,建立政府部门数据资源统筹管理和共享复用制度。研究推动网上个人信息保护立法工作,界定个人信息采集应用的范围和方式,明确相关主体的权利、责任和义务,加强对数据滥用、侵犯个人隐私等行为的管理和惩戒。推动出台相关法律法规,加强对基础信息网络和关键行业领域重要信息系统的安全保护,保障网络数据安全。研究推动数据资源权益相关立法工作。
  (三)健全市场发展机制。建立市场化的数据应用机制,在保障公平竞争的前提下,支持社会资本参与公共服务建设。鼓励政府与企业、社会机构开展合作,通过政府采购、服务外包、社会众包等多种方式,依托专业企业开展政府大数据应用,降低社会管理成本。引导培育大数据交易市场,开展面向应用的数据交易市场试点,探索开展大数据衍生产品交易,鼓励产业链各环节市场主体进行数据交换和交易,促进数据资源流通,建立健全数据资源交易机制和定价机制,规范交易行为。
  (四)建立标准规范体系。推进大数据产业标准体系建设,加快建立政府部门、事业单位等公共机构的数据标准和统计标准体系,推进数据采集、政府数据开放、指标口径、分类目录、交换接口、访问接口、数据质量、数据交易、技术产品、安全保密等关键共性标准的制定和实施。加快建立大数据市场交易标准体系。开展标准验证和应用试点示范,建立标准符合性评估体系,充分发挥标准在培育服务市场、提升服务能力、支撑行业管理等方面的作用。积极参与相关国际标准制定工作。
  (五)加大财政金融支持。强化中央财政资金引导,集中力量支持大数据核心关键技术攻关、产业链构建、重大应用示范和公共服务平台建设等。利用现有资金渠道,推动建设一批国际领先的重大示范工程。完善政府采购大数据服务的配套政策,加大对政府部门和企业合作开发大数据的支持力度。鼓励金融机构加强和改进金融服务,加大对大数据企业的支持力度。鼓励大数据企业进入资本市场融资,努力为企业重组并购创造更加宽松的金融政策环境。引导创业投资基金投向大数据产业,鼓励设立一批投资于大数据产业领域的创业投资基金。
  (六)加强专业人才培养。创新人才培养模式,建立健全多层次、多类型的大数据人才培养体系。鼓励高校设立数据科学和数据工程相关专业,重点培养专业化数据工程师等大数据专业人才。鼓励采取跨校联合培养等方式开展跨学科大数据综合型人才培养,大力培养具有统计分析、计算机技术、经济管理等多学科知识的跨界复合型人才。鼓励高等院校、职业院校和企业合作,加强职业技能人才实践培养,积极培育大数据技术和应用创新型人才。依托社会化教育资源,开展大数据知识普及和教育培训,提高社会整体认知和应用水平。
  (七)促进国际交流合作。坚持平等合作、互利共赢的原则,建立完善国际合作机制,积极推进大数据技术交流与合作,充分利用国际创新资源,促进大数据相关技术发展。结合大数据应用创新需要,积极引进大数据高层次人才和领军人才,完善配套措施,鼓励海外高端人才回国就业创业。引导国内企业与国际优势企业加强大数据关键技术、产品的研发合作,支持国内企业参与全球市场竞争,积极开拓国际市场,形成若干具有国际竞争力的大数据企业和产品。

 



https://blog.sciencenet.cn/blog-38036-920710.html

上一篇:听见月光
下一篇:我国情报学研究中理论的应用情况:十四年间的数据分析
收藏 IP: 131.181.251.*| 热度|

3 钟炳 袁圳伟 魏明坤

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-8 23:30

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部