|
量子力学与狭义相对论之间不协调的问题(2)
1.采用量子力学动能算符和动量算符计算微观粒子的动能,得到的结果一般是不一样的,也就是说现有量子力学的动量算符与动能算符不能一一对应
动能算符和动量算符的不一致体现在物理期望值上,但物理期望值的不同是自然的,因为所谓物理期望值本是对所有可能取值的平均,而动能和动量的关系是非线性的,简单的统计学知识可以知道,非线性的量的统计平均本就不是一一对应的.物理期望值只反映了当一个测量多次重复的时候的一种统计结果(基于量子几率原理的统计,量子力学四大基本假设之一),并不是物理实在,而量子理论的物理实在反映在塌缩前的概率波上,并不反映在统计结果上.
2.量子力学在曲线坐标系中一直无法合理地定义动量算符.此问题十几年前在国内《大学物理》上有许多讨论,但无果而终
曲线坐标系绝大多数情况下都是非正交的,此时需要使用的是一般微分流形上的量子力学.虽然此时时空是平直的,但非正交的取消坐标系依然会给出非平庸的联络,从而采用一般正交的笛卡尔坐标系的方法给出的计算结果本就有问题.而对于一般坐标系(也即联络非常零的坐标系),经典物理层面我们很清楚应该怎么做,但量子体系如何建立依然是一门正在研究的问题,这牵扯到一般微分流形上的纤维丛的量子化问题,是一个正在进行中的课题.所以,不要以为换一个坐标系问题很简单,这个问题即便在经典物理中,也是在广义相对论建立以后才利用微分几何的语言研究清楚的.
3.将动量算符作用于非本征态波函数,得到非本征值都是复数.坐标空间中动量算符的平均值也是复数,在物理上没有意义(除非等于零)
为了解决复数非本征值和复数平均值问题,现有量子力学将任意波函数用算符的本征态波函数展开,实际上将算符的平均值变换到动量空间计算.其结果是,虽然动量算符的复数平均值问题被消除,但坐标算符的复数平均值问题又出现.问题实际上没有被解决,只是被转移.在直角坐标系中,角动量算符没有本征态波函数和本征值,将角动量算符作用任意波函数,得到的都是虚数.直角坐标系中角动量算符没有意义吗?反之,动能算符对任意波函数作用结果都是实数,我们就没有必要将任意波函数按它的本征函数召开.氢原子定态波函数就是一个例子,它们都不是动能算符的本征函数.
首先,量子态可以分解为多个本征态的混合,但无论本征态如何混合,对应的量子态是固定的.其次,量子态天然地具有不确定性与互补性(互补原理是量子四大基本假设之一,衍生而出的就是不确定关系),因此一个固定的量子态的所有可观测量未必都是实数,这取决于这个量子态究竟是什么状态.第三,在宏观物理中,我们所观测到的状态必然是上述量子态在观测所对应的动力学算符的本征态上的塌缩,也就是说只要你观测了,这个量子态就被破坏,变成了某个由观测所决定的本征态上.这是量子非幺正性的主要来源(关于这个问题,近代量子力学的不同诠释给出了不同的描述.这里所采用的是哥本哈根诠释).因此,所谓“物理意义”,不能依然采用经典物理的“意义”来讨论量子问题,一个坐标本征态可以具有实的坐标本征值,但对应的动量本征值必然不是实的,而且也必然不是动量本征值,而是一个混合值.这是量子力学的基本性质.这就好比骰子,坐标描述了1、2、3这三个面,动量描述了4、5、6这三个面,但在某一个确定的瞬间只可能有一个面朝上,所以要么是坐标面朝上要么是动量面朝上.从哥本哈根流派来说,这就是不确定原理所要求的.而如果站在路径积分的角度来说,这是路径积分的一个自然表现或者说是它的数学必然(经典物理也可以有路径积分表示,从而可以看出经典物理和量子物理的关系究竟是什么.)由于将动量本征态作用在非本征态上,所以得到的其实是多个本征值与处在对应本征态上的概率的统计平均,它当然可以不是一个实数了,因为它不是一个物理态,而物理态是这个非本征态在观测导致的量子塌缩后所处的状态——也就是某个动量本征态上.再次提醒,单次测量的话,必然是出于某个本征态上,而多次测量的话则是前面所述的数学期望值,而数学期望值不是简单的量子概率的统计平均,而是量子概率的模平方的统计平均.
4.量子力学的算符对任意波函数的作用结果必须是实数,只有这样做才能构建逻辑完备的量子理论
事实上狄拉克在他的名著《量子力学原理》中只提实算符或线性实算符,从来不提厄密算符,遗憾的是其他物理学家似乎至今都没有意识到这里存在的问题.厄米算符作用在完备量子态的相应本征态上,自然可以得到一个实的“物理”值,这是厄米算符的特性,也是对“实算符”的数学拓展.而为何不用实算符而用厄米算符?因为量子体系的波函数描述中,波函数本身就是复数形式的,而算符本身必然不是一个数,而是一个算符,而算符作用在复函数上如何保证其必须得到实本征值?这就要求引入算符的厄米性.换言之,只要你采用波动表示,并且采用算符作为物理操作的数学描述,那么“物理性”要求就等于要求算符是厄米的.这是给定物理要求以后的数学必然,也就是说,只要你要求了“物理值为实数”这个物理要求,并假定了“量子力学的基本表述是波函数”这个假设,那么所谓的“实算符”就必然是“厄米算符”,不存在别的选择.历史上除了波动表述,还有矩阵表述和路径积分表述.在矩阵表述中,本来是作用在函数上的算符,现在则成了一个矩阵,此时厄米算符等价于一个实矩阵(在算符的本征态表象下,是一个实对角矩阵).此时“实算符”就看上去更自然了,因为矩阵必须是实数.
5.Aspect(阿斯派克特)实验
EPR实验:一个母粒子分裂成向相反方向飞开去的两个小粒子A和B,它们理论上具有相反的自旋方向,但在没有观察之前,照量子派的讲法,它们的自旋是处在不确定的叠加态中的,而爱因斯坦则坚持,从分离的那一刻起,A和B的状态就都是确定了的.阿斯派克特在1982年的实验(准确地说,一系列实验)是20世纪物理史上影响最为深远的实验之一,它的意义甚至可以和1886年的迈克尔逊-莫雷实验相提并论.它是一个类似EPR式的实验.随着技术的进步,特别是激光技术的进步,更为精确严密的实验有了可能.进入80年代,法国奥赛理论与应用光学研究所(Institutd’OptiqueTheoriqueetAppliquee,OrsayCedex)里的一群科学家准备第一次在精确的意义上对EPR作出检验,领导这个小组的是阿莱恩•阿斯派克特(AlainAspect).法国人用钙原子作为光子对的来源,他们把钙原子激发到一个很高的量子态,当它落回到未激发态时,就释放出能量,也就是一对对光子.实际使用的是一束钙原子,但是可以用激光来聚焦,使它们精确地激发,这样就产生了一个强信号源.阿斯派克特等人使两个光子飞出相隔约12米远,这样即使信号以光速在它们之间传播,也要花上40纳秒(ns)的时间.光子经过一道闸门进入一对偏振器,但这个闸门也可以改变方向,引导它们去向两个不同偏振方向的偏振器.如果两个偏振器的方向是相同的,那么要么两个光子都通过,要么都不通过,如果方向不同,那么理论上说(按照爱因斯坦的世界观),其相关性必须符合贝尔不等式.为了确保两个光子之间完全没有信息的交流,科学家们急速地转换闸门的位置,平均10ns就改变一次方向,这比双方之间光速来往的时间都要短许多,光子不可能知道对方是否通过了那里的偏振器.作为对比,也考察两边都不放偏振器,以及只有一边放置偏振器的情况,以消除实验中的系统误差.
实验结果和量子论的预言完全符合,而相对爱因斯坦的预测却偏离了5个标准方差.在世界各地的实验室里,相同或改进精度的实验都表明:粒子们都顽强地保持着一种微妙而神奇(“超光速性”)的联系.困扰爱、波、罗三位论文作者的“鬼魅般的超距作用”("spookyactionatadistance")在为数众多的可再现实验中一再地出现.
①目前的实验表明量子力学正确,决定论的定域的隐变数理论不成立.贝尔不等式这把双刃剑的确威力强大,但它斩断的却不是量子论的光辉,而是反过来击碎了爱因斯坦所执着信守的那个梦想!爱因斯坦到过世前都没有接受量子力学是一个“真实”而完备的理论,一直尝试着想要找到一种诠释可以与相对论相容,且不会暗指“掷骰子的上帝”.
②如果相对论三大理论原则成立,则决定论的定域的隐变数理论成立;实验证明后者不成立,因此,有二个可能的解释,即定域性不成立,或隐变数理论不成立;不管是那一个解释成立,那么,贝尔不等式就没有合理性了,也就是说贝尔不等式没有判断标准上的意义了.从这种逻辑观点来看,相对论者面临放弃定域性(和光速极限关联)或隐变数理论(和决定论有关联)的两难局面.
③Aspect的实验首先发现了违反贝尔不等式的实例.所以说明,决定论,定域性,实在性,要想三者兼得是不可能的.有人退而求其次,承认信息传递的速度可能超过光速,提出了非定域的实在的隐变量理论.但是Zeilinger做了另一个实验,实验结果证明,至少有一部分这样的理论是不正确的.这个结果暗示了,如果还想坚持决定论的隐变量理论,可能要放弃实在论.
④由于相对论理论上把决定论,定域性和实在性组成在一起,以至Aspect实验对决定论,定域性和实在性这三个相对论原则中的任意一个都没有被证伪.但比较有理由认为实验排除了定域实在的可能,也可以说某种“超光速”是可能存在的.
⑤量子理论本身的不完善也可以从这个实验看出来,尽管量子理论的不确定原理可以实验“过关”,但量子论还是没有一种有说服力的理论来解释这种机制.因此,Aspect实验很有可能启发新的理论出现.
⑥逻辑上来看,因为Aspect实验否定了量子理论中定域隐变因果论,而“Lorentz变换”是以定域因果论的原则为基础的,“光速不变”原理是定域因果论的前提原则,所以,量子理论范畴上的相对论量子力学面临最大的挑战,如果承认Aspect实验结果的正确性,则实质上就否定了相对论量子力学的理论前提.
⑦因为物理理论历史的发展原因,量子理论上已经融合了一些相对论的理论,例如相对论量子力学就是这种产物,有时量子论还要借助相对论来自圆其说,这说明要否定相对论对认同量子论的人来讲,也是不愿意的事情.相对论者和量子论者可能宁愿不管实验结果,而采取对Aspect实验模糊态度--只是个选择问题:放弃决定论,可以选择量子力学;坚持决定论而放弃隐变量,还可以在定域性和实在性之间挑一个.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 16:40
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社