||
前沿
随着航空、航天、近地空间遥感平台的持续发展,遥感技术近年来取得显著进步。遥感数据的空间、时间、光谱分辨率及数据量均大幅提升,呈现出大数据特征。这为相关研究带来了新机遇,但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域、多尺度海量遥感数据处理需求。
为解决此问题,全球涌现出多个地球科学数据在线可视化计算和分析云平台,如谷歌Earth Engine(GEE)、航天宏图PIE Engine和阿里AI Earth等。其中,Earth Engine功能最为强大,能存取和同步MODIS、Landsat、Sentinel等卫星影像及NCEP等气象再分析数据集,并依托全球上百万台超级服务器提供强大运算能力。目前,该平台包含1000余个公共数据集,每月新增约2 PB数据,总容量超过100PB。与传统的处理影像工具(例如ENVI)相比,Earth Engine在处理海量遥感数据方面具有显著优势,提供了丰富的计算资源和巨大的云存储能力,节省大量数据下载和预处理时间。它代表了遥感数据计算、分析和可视化领域的世界前沿水平,堪称遥感领域的革命性进展。
第一:理论基础
1、Earth Engine平台及应用、主要数据资源
2、Earth Engine遥感云重要概念、数据类型与对象等
3、JavaScript与Python遥感云编程比较与选择
4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)
5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)
6、JavaScript和Python遥感云API差异,学习方法及资源推荐
7.ChatGPT、Claude、Gemini、文心一言等AI大模型介绍及其遥感领域中的应用
第二:开发环境搭建
1、本地端与云端Python遥感云开发环境
2、本地端开发环境搭建
1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;
2)earthengine-api、geemap等必备软件包安装;
3)遥感云本地端授权管理;
4)Jupyter Notebook/Visual Studio Code安装及运行调试。
3、云端Colab开发环境搭建
4、geemap介绍及常用功能演示。
5.ChatGPT 4、Claude Opus、Gemini、文心一言等AI大模型使用演示。
第三:遥感大数据处理基础与AI大模型交互1、遥感云平台影像数据分享处理流程:遥感云平台影像数据分析处理流程的基本框架,包括数据获取、数据预处理、算法开发、可视化等。2、要素和影像等对象显示和属性字段探索:如何在遥感云平台上显示和探索要素和影像等对象的属性字段,包括如何选择要素和影像对象、查看属性信息、筛选数据等。3、影像/要素的时间,空间和属性过滤方法:如何对影像/要素集进行时间、空间和属性过滤,包括如何选择时间段、地理区域和属性条件,以实现更精确的数据分析。
4.波段运算、条件运算、植被指数计算、裁剪和镶嵌等:如何在遥感云平台上进行波段运算、条件运算、植被指数计算、裁剪和镶嵌等操作,以实现更深入的数据分析。5、Landsat/Sentinel-2等常用光学影像去云:如何在遥感云平台上使用不同方法去除Landsat/Sentinel-2等常用光学影像中的云,以提高影像数据质量。6、影像与要素的迭代循环:如何使用遥感云平台的迭代循环功能对影像和要素集进行批量处理,以提高数据分析效率。7、影像数据整合(Reducer):如何使用遥感云平台的Reducer功能将多个影像数据整合成一个数据集,以方便后续数据分析。8、领域分析与空间统计:如何在遥感云平台上进行邻域分析和空间统计,以获取更深入的空间信息。9、常见错误与代码优化:遥感云平台数据分析过程中常见的错误和如何进行代码优化,以提高数据分析效率和精度。
10.Python遥感云数据分析专属包构建:如何使用Python在遥感云平台上构建数据分析专属包,以方便多次使用和分享分析代码。
第四:典型案例操作实践与AI大模型交互11、机器学习分类算法案例:本案例联合Landsat等长时间序列影像和机器学习算法展示国家尺度的基本遥感分类过程。具体内容包括研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等方面。12、决策树森林分类算法案例:本案例联合L波段雷达和Landsat光学时间序列影像,使用决策树分类算法提取指定地区2007-2020年度森林分布图,并与JAXA年度森林产品进行空间比较。案例涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等方面。13、洪涝灾害监测案例:本案例基于Sentinel-1 C波段雷达等影像,对省级尺度的特大暴雨灾害进行监测。案例内容包括Sentinel-1 C影像处理、多种水体识别算法构建、影像差异分析以及结果可视化等方面。14、干旱遥感监测案例:本案例使用40年历史的卫星遥感降雨数据产品如CHIRPS来监测省级尺度的特大干旱情况。案例内容包括气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,以及数据结果可视化等方面。15、物候特征分析案例:本案例基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。案例内容包括时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等方面。16、森林植被健康状态监测案例:本案例利用20年的MODIS植被指数,对选定区域的森林进行长期监测,并分析森林植被的绿化或褐变情况。涉及影像的连接和合成、趋势分析、空间统计以及可视化等方法。
17.生态环境质量动态监测案例:该案例使用RSEI遥感生态指数和Landsat系列影像,对选定城市的生态状况进行快速监测。主要涉及的技术包括植被指数的计算、地表温度的提取、数据的归一化、主成分PCA分析、RSEI生态指数的构建以及结果的可视化等。
第五:输入输出及数据资产高效管理与AI大模型交互1.本地数据与云端交互:介绍如何将本地端csv、kml、矢量和栅格数据与云端数据相互转换,并讲解数据导出的方法。2.服务器端数据批量下载:包括直接本地下载、影像集批量下载,以及如何快速下载大尺度和长时间序列数据产品,例如全球森林产品和20年的MODIS数据产品等。3.本地端数据上传与属性设置:包括earthengine命令使用,介绍如何上传少量本地端矢量与栅格数据并设置属性(小文件),以及如何批量上传数据并自动设置属性,还将介绍如何使用快速上传技巧上传超大影像文件,例如国产高分影像。
4.个人数据资产管理:介绍如何使用Python和earthengine命令行来管理个人数据资产,包括创建、删除、移动、重命名等操作,同时还会讲解如何批量取消上传/下载任务。
第六:云端数据论文出版级可视化与AI大模型交互1.python可视化及主要软件包简介:介绍matplotlib和seaborn可视化程序包,讲解基本图形概念、图形构成以及快速绘制常用图形等内容。2.研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等,绘制研究区示意图。涉及绘图流程、中文显示、配色美化等内容,还会介绍cpt-city精美调色板palette在线下载与本地端应用等。3.研究区域影像覆盖统计和绘图:对指定区域的Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。4.样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征,动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。5.分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,制作土地利用变化清晰的Timelapse,还会介绍动画文字添加等内容。
6.分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;制作土地利用变化统计绘图等。
第七:AI大模型与科研辅助经验1.文献总结:本部分将演示AI如何帮助研究人员高效提取文献要点,包括快速识别关键变量、研究方法和主要发现,旨在提升文献审阅的效率和质量。2.文献查找:学习如何利用AI工具从海量数据中筛选和推荐与研究议题相关的论文,从而加速文献回顾的过程并确保研究的全面性。3.框架生成:本节将指导如何运用AI工具构建科研论文的大纲框架,并提供结构和逻辑的修改建议,以加强论文的条理性和说服力。4.图表生文:介绍AI如何辅助解读复杂的科研数据和图表,并将这些信息融入论文撰写中,增强论文的数据支撑力和论证的准确性。5.中译英提升:探讨AI翻译工具如何帮助研究者将中文科研材料准确、流畅地转换为英文,满足国际学术交流的需求。
6.中英文润色:通过AI工具优化中文和英文论文的语言表达和学术措辞,提升论文的整体质量,使其更符合专业的学术标准和出版要求。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 16:38
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社