yueliusd07017的个人博客分享 http://blog.sciencenet.cn/u/yueliusd07017

博文

明知是错误的文章,仍然坚持发表,是恶劣的学术不端

已有 2428 次阅读 2024-3-9 11:54 |个人分类:微波吸收|系统分类:科研笔记

宁愿发表错误文章,也不发表垃圾文章

是鼓励创新。这种冒着错误的危险发表了错误文章比发表垃圾文章更有意义,是可以接受的。

但是,明明知道文章是错误的,仍然坚持发表是恶劣的学术不端。

学术世界并不太大,有时候你能猜到审稿人是谁:

科学网—[转载]同行评审就是你的同行有能力阻止世界了解你的工作 (科技英文听力资料,英汉对照) - 刘跃的博文 (sciencenet.cn)

https://www.youtube.com/watch?v=U5sRYsMjiAQ

The Problem With Peer Review - Eric Weinstein

https://blog.sciencenet.cn/video.php?mod=vinfo&pid=3500

有的审稿人在坚决拒了我们的稿件后,其团队继续发表坚持现行错误的微波吸收理论的文章。表明他的课题组已经知晓了反对观点,但是仍然坚持现行微波吸收理论。

有三种解释:

1)审稿人的团队已经知道并且跟踪了反方的观点,知道自己的理论是错的。但是为了考核、为了学生毕业、或者为了向以前的编辑表明自己坚定的立场,不得已而坚持错误理论。凭借自己的权威为错误理论殉道。

2)你不是假装以为错误的理论是”正确“,你是内心真的认为错误的理论是”正确的“。但是这样的话你应该不怕争论。在你的后续文章中你不应该回避错误的反对观点,你需要在你的文章中引用并批判错误的观点,以说明你为什么坚持现行理论。(很多主流学者坚持对付“民科”的最好方法就是置之不理,但这不是科学的态度)

3)在正确和错误的理论之间,你分别不出谁是谁非。所以尽管你的拒稿意见很坚决,但是你还是吃不准,不敢往文章里写。然而,要知道,面对两种理论,只要有大学本科《普通物理》和初中数学的水平,就能辨别出现行微波吸收理论和反对理论谁对谁错。如果你辨别不出来,那么无论你是什么级别的学术权威,多么名噪一时,无论你实验室的仪器多么先进、你在顶级刊物发了多少文章、你拿到了多少项目经费,你的整个课题组都毫无疑问是混混。

=========================

我们名不见经传、几乎没有在顶刊发表文章、一辈子没有拿到一项国家自然科学基金的面上项目、我们的仪器很简陋,但是我们敢于在我们的文章中旗帜鲜明地亮出自己的观点,我们不畏惧权威刊物和学术权威,我们敢于引用他们的文章。

https://blog.sciencenet.cn/blog-3589443-1421765.html

现行微波吸收理论混淆了膜和材料的区别(公开的学术擂台,接受挑战)

科学网—最新顶刊现行微波吸收理论文章和低级别刊物反对文章之间的比较(让历史做最终的裁决) - 刘跃的博文 (sciencenet.cn)

The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC, Adv. Mater2024, 2314233, 

First published: 21 February 2024

Received: December 27, 2023

Revised: February 19, 2024

https://doi.org/10.1002/adma.202314233

https://onlinelibrary.wiley.com/doi/10.1002/adma.202314233

The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on

 Ce Atoms Modulated yolk@shell FexN@NGC - Ma - Advanced Materials - Wiley Online Library

科学网—分析一篇微波吸收科普文章中的代表性错误 - 刘跃的博文 (sciencenet.cn):

顶刊发表的错误文章

[1] J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang, G. Zheng, Q. Zheng, R. Che, Emerging Materials and Designs for Low and MultiBand Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?, Advanced Functional Materials, 32 (2022) 2200123.

[2] Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach, ChemPhysMater, 2 (2023) 197-206.

[3] Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan, J. Yun, L. Zhang, H. Wu, Advancements in Microwave Absorption Motivated by Interdisciplinary Research, Advanced Materials, 36 (2023) 2304182

[4] Q. An, D. Li, W. Liao, T. Liu, D. Joralmon, X. Li, J. Zhao, A Novel UltraWideband ElectromagneticWaveAbsorbing Metastructure Inspired by Bionic Gyroid Structures, Advanced Materials, 35 (2023) 2300659.

[5] G. Chen, H. Liang, J. Yun, L. Zhang, H. Wu, J. Wang, Ultrasonic Field Induces Better Crystallinity And Abundant Defects at Grain Boundaries to Develop Cus Electromagnetic Wave Absorber, Advanced Materials, 35 (2023) 2305586.

[6] J. Ma, J. Choi, S. Park, I. Kong, D. Kim, C. Lee, Y. Youn, M. Hwang, S. Oh, W. Hong, W. Kim, Liquid Crystals for Advanced Smart Devices with Microwave and MillimeterWave Applications: Recent Progress for NextGeneration Communications, Advanced Materials, (2023).

[7] J. Yan, Q. Zheng, S.P. Wang, Y.Z. Tian, W.Q. Gong, F. Gao, J.J. Qiu, L. Li, S.H. Yang, M.S. Cao, Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching MultiBand Devices, Advanced Materials, 35 (2023) 2300015.

[8] B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen, Y. Wu, L. Yang, J. Zhang, L. Wu, D.W. Zhang, R. Che, HighEntropy Enhanced Microwave Attenuation in Titanate Perovskites, Advanced Materials, 35 (2023) 2210243.

[9] I. Huynen, N. Quiévy, C. Bailly, P. Bollen, C. Detrembleur, S. Eggermont, I. Molenberg, J.M. Thomassin, L. Urbanczyk, T. Pardoen, Multifunctional hybrids for electromagnetic absorption, Acta Materialia, 59 (2011) 3255-3266.

[10] W. Yang, Y. Zhang, G. Qiao, Y. Lai, S. Liu, C. Wang, J. Han, H. Du, Y. Zhang, Y. Yang, Y. Hou, J. Yang, Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites, Acta Materialia, 145 (2018) 331-336.

[11] R.H. Fan, B. Xiong, R.W. Peng, M. Wang, Constructing Metastructures with Broadband Electromagnetic Functionality, Adv Mater, 32 (2020) 1904646.

[12] L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, G. Ji, Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities, Adv Mater, 34 (2022) 2106195.

[13] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption, Adv Mater, 28 (2016) 486-490.

[14] H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv Mater, 26 (2014) 8120–8125.

[15] Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption, Adv Mater, 34 (2022) 2107538.

[16] C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced  Materials, 24 (2012) OP98-OP120.

[17] M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic Response and Energy Conversion for Functions and Devices in LowDimensional Materials, Advanced Functional Materials, 29 (2019) 1807398.

[18] P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang, X. Liu, X. Zhang, R. Che, Hierarchical Engineering of DoubleShelled Nanotubes toward HeteroInterfaces Induced Polarization and Microscale Magnetic Interaction, Advanced Functional Materials, 32 (2022) 2202588.

[19] P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang, B. Ouyang, Y. Qian, R. Zhang, R. Che, Synergistic DielectricMagnetic Enhancement via PhaseEvolution Engineering and Dynamic Magnetic Resonance, Advanced Functional Materials, 33 (2023) 2211298.

[20] J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular Patching Engineering to Drive Energy Conversion as Efficient and EnvironmentFriendly Cell toward Wireless Power Transmission, Advanced Functional Materials, 30 (2020) 1908299.

[21] Y. Xia, W. Gao, C. Gao, A Review on GrapheneBased Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption, Advanced Functional Materials, 32 (2022) 2204591.

[22] F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High-Performance Microwave Absorption, Advanced Functional Materials, 28 (2018) 1707205.

====================

科学网—大咖们写的综述有多大的学术价值? - 刘跃的博文 (sciencenet.cn)

”看一看一天全世界要发表多少篇论文?如果每一篇文章都有创新,仅仅用最粗浅的形而上学逻辑分析一下,世界将如何飞速地发展。

有那么多顶刊,每天在顶刊上就发表大量“重大创新”结果!

有多少“创新”是编造出来的?

那么多的综述文章,几乎没有一篇综述文章发现了一丁点的“伪创新”。如果这么大量的伪创新你都发现不了,还要综述文章有何用?难道综述只是用来赞美的吗?“

微波吸收领域的一些综述文章:

[1] J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang, G. Zheng, Q. Zheng, R. Che, Emerging Materials and Designs for Low and MultiBand Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?, Advanced Functional Materials, 32 (2022) 2200123. perspective

[2] Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach, ChemPhysMater, 2 (2023) 197-206.

[3] A.A. Abu Sanad, M.N. Mahmud, M.F. Ain, M.A.B. Ahmad, N.Z.B. Yahaya, Z. Mohamad Ariff, Theory, Modeling, Measurement, and Testing of Electromagnetic Absorbers: A Review, physica status solidi (a), (2023) 2300828.

[4] Y. Xia, W. Gao, C. Gao, A Review on GrapheneBased Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption, Advanced Functional Materials, 32 (2022) 2204591.

[5] B. Li, F. Wang, K. Wang, J. Qiao, D. Xu, Y. Yang, X. Zhang, L. Lyu, W. Liu, J. Liu, Metal sulfides based composites as promising efficient microwave absorption materials: A review, Journal of Materials Science & Technology, 104 (2022) 244-268.

[6] M.F. Elmahaishi, R.a.S. Azis, I. Ismail, F.D. Muhammad, A review on electromagnetic microwave absorption properties: their materials and performance, Journal of Materials Research and Technology, 20 (2022) 2188-2220.

[7] G. Devi, R. Priya, B.R. Tapas Bapu, R. Thandaiah Prabu, P.J. Sathish Kumar, N. Anusha, Role of carbonaceous fillers in electromagnetic interference shielding behavior of polymeric composites: A review, Polymer Composites, 43 (2022) 7701-7723.

[8] H. Zhao, F. Wang, L. Cui, X. Xu, X. Han, Y. Du, Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review, Nano-micro Lett, 13 (2021) 208.

[9] Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia, S. Ma, Z. Yin, Y. Huang, A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials, Nano-micro Lett, 13 (2021) 56.

[10] P. Wang, D. Liu, L. Cui, B. Hu, X. Han, Y. Du, A review of recent advancements in Ni-related materials used for microwave absorption, Journal of Physics D: Applied Physics, 54 (2021) 473003.

[11] S.S. Pattanayak, S.H. Laskar, S. Sahoo, Progress on agricultural residue-based microwave absorber: a review and prospects, Journal of Materials Science, 56 (2021) 4097-4119.

[12] E. Mikinka, M. Siwak, Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review, Journal of Materials Science: Materials in Electronics, 32 (2021) 24585-24643.

[13] J. Ma, J. Choi, S. Park, I. Kong, D. Kim, C. Lee, Y. Youn, M. Hwang, S. Oh, W. Hong, W. Kim, Liquid Crystals for Advanced Smart Devices with Microwave and MillimeterWave Applications: Recent Progress for NextGeneration Communications, Advanced Materials, (2023).

[14] K. Chand, X. Zhang, Y. Chen, Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding, Arabian Journal of Chemistry, 15 (2022) 104143.

[15] F. Peng, M. Dai, Z. Wang, Y. Guo, Z. Zhou, Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption, Journal of Materials Science & Technology, 106 (2022) 147-161.

[16] M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption, Journal of Materiomics, 5 (2019) 503-541.

[17] L. Huang, C. Chen, Z. Li, Y. Zhang, H. Zhang, J. Lu, S. Ruan, Y.J. Zeng, Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures, Nanotechnology, 31 (2020) 162001.

[18] H. Bai, P. Yin, X. Lu, L. Zhang, W. Wu, X. Feng, J. Wang, J. Dai, Recent advances of magnetism-based microwave absorbing composites: an insight from perspective of typical morphologies, Journal of Materials Science: Materials in Electronics, 32 (2021) 25577-25602.

===================

补充阅读:

科学网—华科瞿金平院士团队:用于多场景快速储能和电磁屏蔽的自组装MXene基相变复合材料 - 纳微快报的博文 (sciencenet.cn)

科学网—黄小萧/车仁超等:微量铁注入对石墨烯介电与吸波性能的调控机制 - 纳微快报的博文 (sciencenet.cn)



https://blog.sciencenet.cn/blog-3589443-1424647.html

上一篇:大咖们写的综述有多大的学术价值?
下一篇:对于大多数主流权威犯的浅显而严重的错误视而不见是现代科学界的一个严重问题
收藏 IP: 39.152.24.*| 热度|

10 宁利中 王涛 王安良 孙颉 杨正瓴 檀成龙 高宏 崔锦华 王成玉 郑永军

该博文允许注册用户评论 请点击登录 评论 (15 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-22 10:00

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部