|
过氧化氢作为一种可再生能源载体和清洁绿色的氧化剂,广泛应用于精细化工、生物制药、环境修复等领域[1-3]。H₂O₂发生反应只会产生O₂和H₂O反应副产物,不会对环境造成环境污染[4,5]。
目前工业上最常见的生产H₂O₂的方法是蒽醌法,主要包括氢化、氧化、取代和循环四个步骤。虽然蒽醌法可以大规模生产,但是能耗巨大,且需要使用有毒的有机原料和溶剂,会导致严重的环境污染,不符合绿色化学的发展要求[6-8]。因此,开发绿色H₂O₂制取方法具有非常重要的意义[9-11]。
近年来,越来越多的研究表明,通过光催化技术可以合成H₂O₂,且其原料仅为水和O₂[12,13]。一般来说,光催化H₂O₂合成包括光吸收、电荷载流子的产生和分离、表面氧化还原反应等多个步骤[14-18]。光催化生产H₂O₂具有环保性、高效性、灵活性、可持续性和创新性等多重优势,是一种具有广阔应用前景和可持续发展潜力的新型环保技术。
光催化生产H₂O₂的基本原理在光照条件下,光催化剂会产生许多光生电子-空穴对。位于光催化剂的导带上的光电子具有较强的还原性,位于价带上的光生空穴具有较强的氧化性[19]。光生电子驱动氧还原反应(ORR)和光生空穴诱导水氧化反应(WOR)都是重要的表面氧化还原反应,是光催化过氧化氢演化的主要原因(图1)。
图1.半导体上光催化H₂O₂合成示意图
具体来说,光催化H₂O₂合成的两种方式ORR和WOR,光催化剂在光照条件下产生光生电子和空穴,光生电子能够将O₂还原为H₂O₂,而光生空穴能够将H₂O氧化为H₂O₂[20-22]。如图2所示,光生电子和空穴应当具有适当的氧化还原电位,才能够满足ORR和WOR反应的发生条件[8,23]。
图2.能级示意图
可以看到H₂O₂合成的ORR是双电子过程,可以将其看做直接双电子过程或两个单电子过程(间接双电子过程)[8,24]。对于两个单电子过程,O₂˙⁻是一个重要的中间产物[25]。O₂/H₂O₂的氧化还原电位(0.68 V vs. NHE)比O₂/O₂˙⁻(-0.33 V vs. NHE),根据热力学原理,直接双电子过程更容易发生[8]。
在光催化O₂还原过程中,存在H₂O₂合成反应的竞争反应,即O₂可以通过光生电子进一步还原为H₂O(四电子ORR)[26-27]。O₂/H₂O(1.23 V vs. NHE)的氧化还原电势比O₂/H₂O₂的氧化还原电势更正,从热力学角度来看,四电子ORR更易发生[28]。通常光催化剂对氧的吸附能较低,使得产物易于解吸。总的来说,两个单电子过程在动力学上更有可能发生。同时,O₂极易与光生空穴发生反应,产生单线态氧(¹O₂,O₂˙⁻/¹O₂ 0.34 V vs. NHE),会导致H₂O₂产量降低。
总的来说,光催化H₂O₂合成的直接双电子过程在热力学上更易发生,但是在动力学观点上,两个单电子过程更有利。无论直接双电子过程还是两个单电子过程,都存在一些竞争反应。因此,抑制四电子氧还原反应和¹O₂的形成,高选择性的产生H₂O₂是光催化H₂O₂合成的关键之一。双电子WOR与光催化H₂O₂合成中的双电子ORR类似。
提高光催化H₂O₂产量的策略光催化剂在光催化H₂O₂氧化反应中起着核心作用。到目前为止已经开发出各种功能材料作为光催化剂来生产H₂O₂,并且取得了一些良好的结果[29-31]。通常为了提高光催化H₂O₂合成效率主要有两种方法,即反应条件的优化和光催化剂的改性[32]。
反应条件的优化
• 溶剂类型
一般来说,合适的溶剂不仅能够作为电子供体来捕获空穴并提供足够的质子,还有助于分离光生载流子。目前最常用的溶剂是醇类,如乙醇和异丙醇。醇可以氧化成醛,产生质子还原O₂。Yamashita[33]等人采用样品法制备了一种疏水性钛掺杂锆基MOF,这种MOF在苄醇水溶液中经可见光照射能够获得很高的H₂O₂产率(9700.00 μmol L⁻¹ h⁻¹)。但是醇类的使用也会带来的高成本和纯化过程复杂问题。Lan[34]等人构建了稳定的钴基金属有机笼,金属-非金属活性位点协同作用,反应底物可以通过笼的配位化学与活性位点接触。在纯水中光催化H₂O₂产生的速率高达146.60 μmol L⁻¹ h⁻¹。除此之外,采用海水光催化H₂O₂生产也是一种可行的方法。Das[35]等人合成了一种g-C₃N₄催化剂,这种催化剂在光催化H₂O₂产生中表现出优异的活性。使用纯水或海水光催化H₂O₂具有很好的应用前景,但是低效率是实际应用的最大障碍。
• pH值
反应体系的pH值也是影响光催化H₂O₂生产的催化剂性能,很多研究工作忽略了这一点。Wang[36]等人制备了有机聚合物点(PFB-PCBM Pdots),PFBT-PCBM Pdots在碱性条件下才能实现光催化H₂O₂产生(图3a)。Mao[37]等人的研发线环糊精嘧啶聚合物在酸性条件下具有更高的光催化H₂O₂产率(图3b)。与碱性反应环境相比,酸性反应环境中会有更多的质子,同时光催化剂的活性位点可能会受到pH值的影响,因此pH值的改变可能会对生成途径产生影响。
图3.(a)pH值对光催化H₂O₂产率的影响[38];(b)pH值对光催化H₂O₂产生的影响[39];(c)光催化H₂O₂产生的示意图[40];(d)在二氧化钛纳米棒上制备超小BiOI纳米点的反应物预固定策略示意图,以及样品的扫描电镜、透射电镜图像和紫外-可见光谱[41];(e)“瓶中船”和“船中瓶”示意图;(f)光催化剂的TEM图像和光催化H₂O₂合成示意图[42]
• O₂含量
对于双电子ORR,O₂是关键的原料。由于水中溶解氧很少,将氧气注入反应系统是提高光催化H₂O₂产率的一种有效的方法。由空穴触发的四电子氧化还原反应可以为双电子氧化还原反应提供氧气。Domen[43]等人的研究中,CoOx/Mo:BiVO₄/Pd产生的空穴可以将水氧化形成氧气,然后通过双电子氧化还原反应将获得的氧气进一步还原为H₂O₂(图3c)。
光催化剂改性
• 吸收光线的增强
强光吸收能力是光催化剂的必要属性。一般来说,光催化剂的光吸收特性主要有能带结构决定。为了提高光催化剂的光吸收能力,提出了一些有效的策略来修饰光催化剂的能带结构,例如表面改性工程、负载量子点、掺杂和局域表面等离子体共振(LSPR)效应。光敏剂的引入是最常见的表面改性工程之一。Feng[44]通过在TiO₂纳米棒组装的微型花朵上均匀装饰BiOI纳米点,制备了具有代表性的纳米区域光催化异质结构(图3d),可见光敏化纳米点很好的分散在TiO₂纳米棒表面,有效的增强TiO₂的可见光捕获能力。量子点是在纳米尺度上具有独特光学性质的半导体,负载量子点被认为是提高催化剂光吸收能力的可行策略。目前已报道的两种典型的将量子点负载到催化剂上的方法,即“瓶中船”和“船中瓶”方法(图3e)。Cao[45]等人采用了一种简单的方法来构建磷掺杂的多孔g-C₃N₄(图3f),具有典型的孔结构,g-C₃N₄的光吸收能力也得到了提高。最高H₂O₂产率可达到1968 μmol g⁻¹ h⁻¹,光催化产H₂O₂的途径包括双电子ORR和双电子WOR。
当入射光子的频率与金属内部等离子体的振荡频率相同时,会发生共振,导致入射光的强烈吸收,这种现象称为LSPR效应(图4a)。Li[46]等人通过用Au纳米颗粒封装在NH₂-UiO-66纳米笼中,制备了Au@NH₂-UiO-66/CdS复合材料,引入的金纳米粒子在523 nm处表现出明显的LSPR特征峰。由于金纳米颗粒的LSPR效应,Au@NH₂-UiO-66/CdS复合材料在析氢反应中表现出优异的催化性能,金纳米粒子在波长523 nm表现出明显的LSPR特征峰(图4b),Au@NH₂-UiO-66/CdS复合材料在析氢反应中表现出优异的催化性能。
图4.(a)表面等离子共振效应示意图;(b)样品的TEM图像和紫外可见光谱[47];(c)样品光谱及模拟机理[48];(d)不同催化剂光催化H₂O₂演化比较[49]
• 电荷分离的改善
光生电子和空穴易复合是一个不可避免的问题,严重限制了光催化剂的工程应用。
由于某些金属离子具有多层价态,金属离子可通过氧化还原偶联在电子传递中起一定作用。因此,掺杂金属离子被认为是抑制光诱导电子和空穴重组的有效途径。Xue[50]等利用卟啉钴用一种简单的方法来装饰金纳米粒子,由于钴离子在电子转移中的作用,金纳米粒子上的电荷分离效率明显提高,光催化H₂O₂产率高达235.93 μmol L⁻¹(图4c)。
异质结的构建也可以提高电荷分离效率。两种材料结合会在界面处形成异质结,通过不同组分之间的异质结可以实现光生载流子的相互传输。Wang[51]等人的研究中,基于原位生长方法制备了灌装氮化碳(TCN)/ZnIn₂S₄(ZIS)异质结。由于形成了II型异质结,电荷分离能力得到改善,在TCN/ZIS上可以实现2.77 mmol g⁻¹ h⁻¹的H₂O₂产率(图4d)。Ye[52]等人通过耦合g-C₃N₄和Zn聚菲咯啉制备了一种新型的Z-scheme异质结,在纯水中可以实现114 μmol g⁻¹ h⁻¹ H₂O₂的产率。
• 表面光催化反应的增强
普遍认为光催化H₂O₂合成的途径主要涉及双电子ORR和双电子WOR,这些反应通常发生在催化剂的表面,因此增强表面光催化反应对光催化剂上H₂O₂的产生有积极影响。
• 抑制H₂O₂分解
在碱性环境或高温下,H₂O₂容易分解为H₂O和O₂。同时在光催化剂表面形成的H₂O₂可以与光生电子或空穴进一步反应。因此及时从光催化剂表面脱附H₂O₂非常重要。Yamashita[53]等人将十八烷基磷酸用于对钛掺杂的Zr基MOF进行改性,使其具有疏水性,光催化和H₂O₂分散在苯基乙醇和水中,从而抑制了H₂O₂的分解。
总结与展望太阳能驱动的光催化过程为生产H₂O₂提供了一种有前途的绿色方法。尽管过去的几十年,许多研究人员致力于探索光催化H₂O₂产生在工程应用的可行性。尽管取得了显著的进展,光催化H₂O₂生产仍有很长的路要走。众所周知,光催化H₂O₂合成的核心是光催化剂,然而目前大多数光催化剂还没有强光吸收能力和高电子-空穴对分离效率,未来研究可以继续关注这些问题。此外,表面光催化反应的改善对光催化剂H₂O₂合成具有积极影响。除上述问题外,缺乏合适的反应器,使得光催化剂的回收和再生困难,限制了光催化H₂O₂合成在实际工程中的应用。虽然有许多挑战和问题阻碍光催化H₂O₂合成进一步发展,但光催化H₂O₂合成仍然是一个有吸引力的领域。
参考文献
[1] R.H. Adnan, A.A. Jalil, Gold photocatalysis in sustainable hydrogen peroxide generation, Mater. Today Chem. 27 (2023) 101322.
[2] W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N.D. Browning, Y. Wu, J.W. Ward, A.I. Cooper, Accelerated Synthesis and Discovery of Covalent Organic Framework Photocatalysts for Hydrogen Peroxide Production, J. Am. Chem. Soc. 144 (2022) 9902–9909.
[3] R. Dhawle, J. Vakros, V. Dracopoulos, I.D. Manariotis, D. Mantzavinos, P. Lianos, Enhancement of the photoelectrochemical production of hydrogen peroxide under intermittent light supply in the presence of an optimized biochar supercapacitor, Electrochim. Acta 427 (2022) 140846.
[4] Q. Hu, Y. Huang, X. Yu, S. Gong, Y. Wen, Y. Liu, G. Li, Q. Zhang, R. Ye, X. Chen, Ultrafast Hole Transfer in Graphitic Carbon Nitride Imide Enabling Efficient H₂O₂ Photoproduction, ACS Appl. Mater. Interfaces 15 (2023) 42611–42621.
[5] F. Hao, C. Yang, X. Lv, F. Chen, S. Wang, G. Zheng, Q. Han, Photo-Driven QuasiTopological Transformation Exposing Highly Active Nitrogen Cation Sites for Enhanced Photocatalytic H₂O₂ Production. Angewandte Chemie - International Edition (2023) 2315456.
[6] A. Rogolino, I.F. Silva, N.V. Tarakina, M.A.R. Da Silva, G.F.S.R. Rocha, M. Antonietti, I.F. Teixeira, Modified Poly (Heptazine Imides): Minimizing H₂O₂ Decomposition to Maximize Oxygen Reduction, ACS Appl. Mater. (2022) 49820–49829.
[7] D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Covalent Organic Frameworks Containing Dual O₂ Reduction Centers for Overall Photosynthetic Hydrogen Peroxide Production, Angew. Chem. Int. Ed. 2217479 (2023).
[8] Y. Cong, X. Li, S. Zhang, Q. Zheng, Y. Zhang, S. Lv, Embedding Carbon Quantum Dots into Crystalline Polyimide Covalent Organic Frameworks to Enhance Water Oxidation for Achieving Dual-Channel Photocatalytic H₂O₂ Generation in a Wide pH Range, ACS Appl. Mater. Interfaces 15 (2023) 43799–43809.
[9] Y. Zhao, J. Gao, Z. Yang, L. Li, J. Cui, P. Zhang, C. Hu, C. Diao, W. Choi, Efficient Exciton Dissociation in Ionically Interacted Methyl Viologen and Polymeric Carbon Nitride for Superior H₂O₂ Photoproduction, ACS Catal. 5 (2023) 2790–2801.
[10] S. Chai, X. Chen, X. Zhang, Y. Fang, R.S. Sprick, X. Chen, Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production, Environ. Sci.-Nano 9 (2022) 2464–2469.
[11] Y. Cong, S. Zhang, Q. Zheng, X. Li, Y. Zhang, S. Lv, Oxygen-modified graphitic carbon nitride with nitrogen-defect for metal-free visible light photocatalytic H₂O₂ evolution, J. Colloid Interface Sci. 650 (2023) 1013–1021.
[12] C. Zhuang, W. Li, T. Zhang, J. Li, Y. Zhang, G. Chen, H. Li, Z. Kang, J. Zou, X. Han, Monodispersed aluminum in carbon nitride creates highly efficient nitrogen active sites for ultra-high hydrogen peroxide photoproduction, Nano Energy 108 (2023) 108225.
[13] J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang, S. Dong, Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity, Nat. Commun. 13(2022)7457.
[14] Q. Liao, Q. Sun, H. Xu, Y. Wang, Y. Xu, Z. Li, J. Hu, D. Wang, H. Li, K. Xi, Regulating Relative Nitrogen Locations of Diazine Functionalized Covalent Organic Frameworks for Overall H₂O₂ Photosynthesis, Angew. Chem. – Int. Ed. 62 (2023) 2310556.
[15] R.A. Borges, M.F. Pedrosa, Y.A. Manrique, C.G. Silva, A.M.T. Silva, J.L. Faria, M. J. Sampaio, 3D structured photocatalysts for sustainable H₂O₂ generation from saccharides derivatives, Chem. Eng. J. 470 (2023) 144066.
[16] Q. Hu, Y. Dong, K. Ma, X. Meng, Y. Ding, Amidation crosslinking of polymeric carbon nitride for boosting photocatalytic hydrogen peroxide production, J. Catal. 413 (2022) 321–330.
[17] Y. Zhao, L. Xu, X. Wang, Z. Wang, Y. Liu, Y. Wang, Q. Wang, Z. Wang, H. Huang, Y. Liu, W. Wong, Z. Kang, A comprehensive understanding on the roles of carbon dots in metallated graphyne based catalyst for photoinduced H₂O₂ production, Nano Today 43 (2022) 101428.
[18] Y. Guo, X. Tong, N. Yang, Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance. Nano-Micro Lett. 15 (2023) 77.
[19] S. Lv, Q. Zheng, L. Ye, C. Li, J. Liu, Y. Cong, S. Wang, The elaborately-designed Zscheme Fe-g-C₃N₄/α-Fe₂O₃ photocatalytic platform equipping with active N-Fe-O bridges for enhanced synergistic removal of tetracycline and Cr (VI) via photoinduced electron transfer process, Chem. Eng. J. 455 (2023) 140940.
[20] Y. Ding, S. Maitra, S. Halder, C. Wang, R. Zheng, T. Barakat, S. Roy, L. Chen, B. Su, Emerging semiconductors and metal-organic-compounds-related photocatalysts for sustainable hydrogen peroxide production, Matter 5 (2022) 2119–2167.
[21] J. Sun, J. Chakraborty, M. Deng, A. Laemont, X. Feng, Y. Liu, P. van der Voort, Metal-organic frameworks and covalent organic frameworks as photocatalysts for H₂O₂ production from oxygen and water, J. Mater. Chem. A 11 (2023) 21516–21540.
[22] Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, H₂O₂ generation from O₂ and H₂O on a near-infrared absorbing porphyrin supramolecular photocatalyst, Nat. Energy 8 (2023) 361–371.
[23] B. Liu, W. Zhang, Q. Zhang, Y. Guan, Z. Lu, Synergistic Promotion of the Photocatalytic Preparation of Hydrogen Peroxide (H₂O₂) from Oxygen by Benzoxazine and SiOTi Bond, Small 2303907 (2023).
[24] L. Zhai, Z. Xie, C. Cui, X. Yang, Q. Xu, X. Ke, M. Liu, L. Qu, X. Chen, L. Mi, Constructing Synergistic Triazine and Acetylene Cores in Fully Conjugated Covalent Organic Frameworks for Cascade Photocatalytic H₂O₂ Production, Chem. Mat. 34 (2022) 5232–5240.
[25] X. Zhang, P. Ma, C. Wang, L. Gan, X. Chen, P. Zhang, Y. Wang, H. Li, L. Wang, X. Zhou, K. Zheng, Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H₂O₂ evolution, Energy Environ. Sci. 15 (2022) 830–842.
[26] X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng, J. Hou, X. Zhou, P. Ma, H. Hu, K. Wang, C. Wang, L. Gan, Y. Zhao, Q. Liu, T. Zhang, K. Zheng, Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H₂O₂ production, Nat. Commun. 14 (2023) 7115.
[27] B. Liu, J. Du, G. Ke, B. Jia, Y. Huang, H. He, Y. Zhou, Z. Zou, Boosting O₂ Reduction and H₂O Dehydrogenation Kinetics: Surface N-Hydroxymethylation of g-C₃N₄ Photocatalysts for the Efficient Production of H₂O₂, Adv. Funct. Mater. 32 (2022) 2111125.
[28] S. Qu, H. Wu, Y.H. Ng, Clean Production of Hydrogen Peroxide: A Heterogeneous Solar-Driven Redox Process, Adv. Energy Mater. 13 (2023) 2301047.
[29] M. Deng, J. Sun, A. Laemont, C. Liu, L. Wang, L. Bourda, J. Chakraborty, K. Van Hecke, R. Morent, N. De Geyter, K. Leus, H. Chen, P. van der Voort, Extending the π-conjugation system of covalent organic frameworks for more efficient photocatalytic H₂O₂ production, Green Chem. 25 (2023) 3069–3076.
[30] K. Jinguji, M. Watanabe, R. Morita, Y. Takaoka, M.S. Hossain, J.T. Song, A. Takagaki, J. Matsuda, T. Ishihara, Visible light driven hydrogen peroxide production by oxygen and phosphorus co-doped CoP-C₃N₄ photocatalyst, Catal. Today 426 (2024) 114400.
[31] M. Ikram, A. Raza, S.O.A. Ahmad, A. Ashfaq, M.U. Akbar, M. Imran, S. Dilpazir, M. Khan, Q. Khan, M. Maqbool, Solar-Triggered Engineered 2D-Materials for Environmental Remediation: Status and Future Insights, Adv. Mater. Interfaces 10 (2023) 2202172.
[32] Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production, Chem 8 (2022) 2924–2938.
[33] X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system, J. Mater. Chem. A 8 (2020) 1904–1910.
[34] J. Lu, J. Liu, L. Dong, J. Lin, F. Yu, J. Liu, Y. Lan, Synergistic Metal-Nonmetal Active Sites in a Metal-Organic Cage for Efficient Photocatalytic Synthesis of Hydrogen Peroxide in Pure Water, Angewandte Chemie - International Edition 62 (2023) 2308505.
[35] P. Ren, T. Zhang, N. Jain, H.Y.V. Ching, A. Jaworski, G. Barcaro, S. Monti, J. Silvestre-Albero, V. Celorrio, L. Chouhan, A. Rokicinska, E. Debroye, P. Kustrowski, S. Van Doorslaer, S. Van Aert, S. Bals, S. Das, An Atomically Dispersed Mn-Photocatalyst for Generating Hydrogen Peroxide from Seawater via the Water Oxidation Reaction (WOR), J. Am. Chem. Soc. 145 (2023) 16584–16596.
[36] S. Wang, B. Cai, H. Tian, Efficient Generation of Hydrogen Peroxide and Formate by an Organic Polymer Dots Photocatalyst in Alkaline Conditions, Angewandte Chemie - International Edition 61 (2022) 2202733.
[37] C. Chu, Q. Li, W. Miao, H. Qin, X. Liu, D. Yao, S. Mao, Photocatalytic H₂O₂ production driven by cyclodextrin-pyrimidine polymer in a wide pH range without electron donor or oxygen aeration, Applied Catalysis b: Environmental 314 (2022) 121485.
[38] Z. Zheng, F. Han, B. Xing, X. Han, B. Li, Synthesis of Fe₃O₄@CdS@CQDs ternary core-shell heterostructures as a magnetically recoverable photocatalyst for selective alcohol oxidation coupled with H₂O₂ production, J. Colloid Interface Sci. 624 (2022) 460–470.
[39] X. Li, Q. Zheng, X. Wang, Q. Zheng, Y. Zhang, Y. Cong, S. Lv, Introduction of electron-deficient unit in resorcinol-formaldehyde resin to construct donor–acceptor conjugated polymer for enhancing photocatalytic H₂O₂ production, J. Mater. Chem. A 12 (2024) 8420–8428.
[40] Y. Shiraishi, M. Matsumoto, S. Ichikawa, S. Tanaka, T. Hirai, Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion, J. Am. Chem. Soc. 143 (2021) 12590–12599.
[41] J. Chang, Q. Li, J. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S. Li, Y. Lan, OxidationReduction Molecular Junction Covalent Organic Frameworks for Full Reaction Photosynthesis of H₂O₂, Angewandte Chemie - International Edition 62 (2023) 2218868.
[42] Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production, Chem 8 (2022) 2924–2938.
[43] T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu, K. Domen, Overall photosynthesis of H₂O₂ by an inorganic Overall photosynthesis of H₂O₂ by an inorganic semiconductor. Nat. Commun. 13 (2022) 1034.
[44] H. Feng, L. Liang, Y. Liu, Z. Huang, L. Li, Efficient nano-regional photocatalytic heterostructure design via the manipulation of reaction site self-quenching effect, Applied Catalysis b: Environmental 243 (2019) 220–228.
[45] J. Cao, H. Wang, Y. Zhao, Y. Liu, Q. Wu, H. Huang, M. Shao, Y. Liu, Z. Kang, Phosphorus-doped porous carbon nitride for efficient sole production of hydrogen peroxide via photocatalytic water splitting with a two-channel pathway, J. Mater. Chem. A 8 (2020) 3701–3707.
[46] Z. Li, J. Zi, X. Luan, Y. Zhong, M. Qu, Y. Wang, Z. Lian, Localized Surface Plasmon Resonance Promotes Metal-Organic Framework-Based Photocatalytic Hydrogen Evolution, Adv. Funct. Mater. 33 (2023) 2303069.
[47] P. Ren, T. Zhang, N. Jain, H.Y.V. Ching, A. Jaworski, G. Barcaro, S. Monti, J. Silvestre-Albero, V. Celorrio, L. Chouhan, A. Rokicinska, E. Debroye, P. Kustrowski, S. Van Doorslaer, S. Van Aert, S. Bals, S. Das, An Atomically Dispersed Mn-Photocatalyst for Generating Hydrogen Peroxide from Seawater via the Water Oxidation Reaction (WOR), J. Am. Chem. Soc. 145 (2023) 16584–16596.
[48] S. Wang, B. Cai, H. Tian, Efficient Generation of Hydrogen Peroxide and Formate by an Organic Polymer Dots Photocatalyst in Alkaline Conditions, Angewandte Chemie - International Edition 61 (2022) 2202733.
[49] C. Chu, Q. Li, W. Miao, H. Qin, X. Liu, D. Yao, S. Mao, Photocatalytic H₂O₂ production driven by cyclodextrin-pyrimidine polymer in a wide pH range without electron donor or oxygen aeration, Applied Catalysis b: Environmental 314 (2022) 121485.
[50] Q. Xue, Z. Wang, S. Han, Y. Liu, X. Dou, Y. Li, H. Zhu, X. Yuan, Ligand engineering of Au nanoclusters with multifunctional metalloporphyrins for photocatalytic H₂O₂ production, J. Mater. Chem. A 10 (2022) 8371–8377.
[51] J. Wang, C. Guo, Y. Jiang, J. Wan, B. Zheng, Y. Li, B. Jiang, Highly efficient photocatalytic H₂O₂ production by tubular g-C₃N₄/ZnIn₂S₄ nanosheet heterojunctions via improved charge separation, Sci. China-Mater. 66 (2023) 1053–1061.
[52] Y. Ye, J. Pan, F. Xie, L. Gong, S. Huang, Z. Ke, F. Zhu, J. Xu, G. Ouyang, Highly efficient photosynthesis of hydrogen peroxide in ambient conditions, Proc. Natl. Acad. Sci. u. s. a. 118 (2021).
[53] X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system, J. Mater. Chem. A 8 (2020) 1904–1910.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-7 14:28
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社