|
随着人工智能技术的飞速发展,其与多学科的交叉融合以及在工程实践领域的纵深拓展已成为时代潮流。在这一背景下,MATLAB 2024b深度学习工具箱应运而生,凭借架构创新与功能强化,为科研工作者提供了一套全栈式的科研创新与行业应用解决方案,具有重要的时代意义。
本教程紧密围绕该版本工具链的三大革新方向展开,致力于助力科研工作者在深度学习领域取得突破性进展。首先,构建了覆盖经典模型与前沿架构的体系化教程,从CNN、LSTM等基础网络到Transformer、GNN、PINN等新兴技术,形成了完整的知识图谱。这不仅有助于科研工作者系统地掌握深度学习的核心技术,还能使其紧跟学术前沿,为科研创新提供坚实的知识基础。
其次,强化了工业级应用场景落地方案。通过YOLO目标检测模型、U-Net语义分割模型、TCN时间序列模型等实战案例,贯穿数据清洗、模型设计、训练优化到模型压缩的全生命周期管理。这一革新方向使科研工作者能够将理论知识与实际应用紧密结合,提升其解决实际问题的能力,推动科研成果向工程实践的转化。
最后,首创了多模态协同开发模式,深度整合Model Hub预训练生态库、实验管理器超参优化模块,并突破性地实现了与TensorFlow/PyTorch框架互操作、大语言模型本地化部署等关键技术。这为科研工作者提供了更加灵活、高效的开发环境,有助于他们在不同框架之间自由切换,充分利用各种资源,加速科研进程。
核心技术突破体现在四个方面:物理信息神经网络(PINN)模块实现微分方程约束与深度学习框架的耦合建模,为科学计算开辟了新范式;深度网络设计器新增模型剪枝与量化工具链,结合FPGA部署方案大幅提升边缘计算效率;Transformer技术专题纵向解析BERT/GPT/ViT架构演变,横向打通NLP与CV领域迁移应用;大语言模型本地部署接口支持Ollama与DeepSeek的无缝集成,构建智能对话系统开发闭环。
立足于工程实践与学术前沿双重视角,本教程精心设计了16个技术模块的系统化学习路径。通过深入学习这些模块,科研工作者将能够快速掌握工业级深度学习解决方案的开发能力,为推动人工智能技术在科研与工程领域的深度融合与发展贡献自己的力量。
第一章 MATLAB 2024b深度学习工具箱新特性简介
1、MATLAB Deep Learning Toolbox概览
2、实时脚本(Live Script)与交互控件(Control)功能介绍与演示
3、批量大数据导入及Datastore类函数功能介绍与演示
4、数据清洗(Data Cleaning)功能介绍与演示
5、深度网络设计器(Deep Network Designer)功能介绍与演示
6、实验管理器(Experiment Manager)功能介绍与演示
7、MATLAB Deep Learning Model Hub简介
8、MATLAB与TensorFlow、PyTorch等深度学习框架协同工作功能介绍与演示
9、MATLAB Deep Learning Toolbox Examples简介
第二章 卷积神经网络(Convolutional Neural Network, CNN)
1、深度学习与传统机器学习的区别与联系
2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系
4、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装
5、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)
6、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)
7、案例讲解:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)1D CNN模型解决回归拟合预测问题
8、实操练习
第三章 模型可解释性与特征可视化Model Explanation and Feature Visualization
1、什么是模型可解释性?为什么要对CNN模型进行解释?
2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3、CAM(Class Activation Mapping)、GRAD-CAM、LIME(Local Interpretable Model-agnostic Explanation)、t-SNE等方法原理讲解
4、案例讲解:基于CAM/Grad-CAM的卷积神经网络模型的特征可视化
5、实操练习
第四章 迁移学习算法(Transfer Learning)
1、迁移学习算法的基本原理(为什么需要迁移学习?迁移学习的基本思想是什么?)
2、基于深度神经网络模型的迁移学习算法
3、案例讲解:基于Alexnet预训练模型的模型迁移
4、实操练习
第五章 循环神经网络与长短时记忆神经网络(RNN & LSTM)
1、循环神经网络(RNN)与长短时记忆神经网络(LSTM)的基本原理
2、RNN与LSTM的区别与联系
3、案例讲解:(1)时间序列预测;(2)序列-序列分类
4、实操练习
第六章 时间卷积网络(Temporal Convolutional Network, TCN)
1、时间卷积网络(TCN)的基本原理
2、TCN与1D CNN、LSTM的区别与联系
3、案例讲解:(1)时间序列预测:新冠肺炎疫情预测;(2)序列-序列分类:人体动作识别
4、实操练习
第七章 生成式对抗网络(Generative Adversarial Network)
1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以做什么?)
2、案例讲解:向日葵花图像的自动生成
3、实操练习
第八章 自编码器(AutoEncoder)
1、自编码器的组成及基本工作原理
2、经典自编码器(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)
3、案例讲解:基于自编码器的图像分类
4、实操练习
第九章 目标检测YOLO模型
1、什么是目标检测?目标检测与目标识别的区别与联系?YOLO模型的工作原理(从传统目标检测到基于深度学习的目标检测、从“两步法”的R-CNN到“一步法”的YOLO、YOLO模型的演化历史)
2、案例讲解:(1)标注工具Image Labeler功能简介与演示;(2)使用预训练模型实现图像、视频等实时目标检测;(3)训练自己的数据集:新冠疫情佩戴口罩识别
3、实操练习
第十章 图像语义分割U-Net模型
1、语义分割(Semantic Segmentation)简介
2、U-Net模型的基本原理
3、案例讲解:基于U-Net的多光谱图像语义分割
第十一章 注意力机制(Attention)
1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。
2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)
3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力
4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)
5、案例演示:(1)基于注意力机制的Seq-to-Seq翻译;(2)基于注意力机制的图像描述
6、实操练习
第十二章 Transformer模型及其在NLP和CV领域的应用
1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景)
2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)
3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)
4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)
5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)
6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、上下文学习、RLHF人类反馈强化学习、多模态架构)
7、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化
8、案例演示:(1)基于BERT模型的文本分类;(2)基于ViT模型的图像分类
9、实操练习
第十三章 物理信息神经网络(PINN)
1、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)
2、案例演示:基于PINN的微分方程求解
3、实操练习
第十四章 图神经网络(GNN)
1、图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。
3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。
4、图卷积网络(GCN)的工作原理。
5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。
6、案例演示:(1)基于图卷积神经网络的节点分类;(2)基于图神经网络的时间序列异常点检测
7、实操练习
第十五章 深度学习模型压缩(Compression)
1、深度学习模型压缩的常用方法(裁剪、量化、Dropout、正则化等)
2、Deep Learning Toolbox Model Compression Library的安装与模型压缩
3、案例演示:基于Deep Network Designer的模型压缩
4、实操练习
第十六章 MATLAB接入ChatGPT/DeepSeek等大语言模型
1、Ollama下载与安装
2、Large Language Models (LLMs) with MATLAB下载与安装
3、ChatGPT API Key配置与MATLAB接入ChatGPT对话
4、本地部署DeepSeek大语言模型与MATLAB接入DeepSeek对话
5、案例讲解与实操练习
第十七章 讨论与答疑
1、总结与答疑讨论
2、相关学习资料分享与拷贝(图书推荐等)
3、建立微信群,便于后期的讨论与答疑
关 注【科研充电吧】公 众 号,获取海量教程和资源
1/0 | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閹烘挶浜滈柨鏂跨仢瀹撳棛鈧鍠楅悡锟犮€侀弮鍫濋唶闁绘柨寮剁€氬ジ姊绘担鍛婂暈缂佽鍊婚埀顒佸嚬閸o綁宕洪姀鈥崇窞闁归偊鍘鹃崢鍗炩攽閳藉棗鐏犻柣蹇旂箖缁傚秹宕烽鐘碉紲濡炪倖妫侀崑鎰櫠閿旈敮鍋撶憴鍕闁靛牊鎮傞獮鍐閵忋垻鐓撻梺鍓茬厛閸犳洜妲愰悢灏佹斀闁绘ɑ鍓氶崯蹇涙煕閻樻剚娈滈柕鍡楀暣瀹曘劑顢橀崶銊р槈閾绘牠鏌涘☉鍗炲箻妞わ富鍣e娲箰鎼淬垻顦ラ梺绋匡工缂嶅﹪骞冮敓鐘参ㄩ柨鏂垮⒔閻﹀牓姊婚崒姘卞缂佸甯¢弫宥咁吋閸℃洜绠氶梺鍦帛鐢骞夐崫銉х<閺夊牄鍔屽ù顕€鏌熼瑙勬珚闁诡喗绮岃灒闁绘挸瀛╅柨顓熺節閻㈤潧鍓崇紒鑼舵鐓ら柕鍫濐槹閺呮繃銇勮箛鎾村櫢缂佽妫濋弻娑㈩敃閿濆棛顦ュ┑锛勫仒缁瑩寮诲☉銏犵疀闁靛⿵闄勯悵鏇㈡⒑閸濆嫭顥欓柛妤€鍟块~蹇曠磼濡顎撻梺鍛婄☉閿曘儵宕曢幘缁樷拺鐟滅増甯楅弫閬嶆煕閵娿儲璐℃俊鍙夊姍閹瑧鈧稒锚椤庢捇姊洪崨濠冨碍鐎殿喖澧庣槐鐐存償閵婏腹鎷洪梺璇″瀻閸涱垼鍟堟俊鐐€ら崑鍕囬鐐村仼闂佸灝顑呯欢鐐烘煙闁箑骞橀柛姗嗕簼缁绘繈鎮介棃娑楃捕闂佽绻戠换鍫濈暦濠靛棌鍫柛顐ゅ枔閸樿棄鈹戦悩缁樻锭閻庢凹鍓熼幃姗€宕f径瀣伎婵犵數濮撮崯顖炲Φ濠靛鐓欐い鏃€鍎抽崢瀵糕偓娈垮枛閻栧ジ鐛幇顓熷劅妞ゆ柨鍚嬮弳蹇涙⒒閸屾艾鈧兘鎳楅崼鏇炵疇闁规崘顕ч崥褰掓煛瀹ュ骸骞栫紒鐙€鍨堕弻銊╂偆閸屾稑顏�:0 | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄婵犲灚鍔栫紞妤呮⒑闁偛鑻晶顕€鏌涙繝鍌涘仴妤犵偞鍔栫换婵嬪礃椤忓棗楠勯梻浣稿暱閹碱偊顢栭崶鈺冪煋妞ゆ棃鏁崑鎾舵喆閸曨剛锛橀梺鍛婃⒐閸ㄧ敻顢氶敐澶婇唶闁哄洨鍋熼娲⒑缂佹ḿ鎳冮柟铏姍閻涱噣濮€閵堝棌鎷婚梺绋挎湰閻燂妇绮婇悧鍫涗簻妞ゆ劑鍩勫Σ鎼佹煟閿濆懎妲婚摶锝夋偠濞戞帒澧查柣蹇撳暙閳规垿鎮欓弶鎴犱桓缂佺偓婢樼粔褰掋€侀弴鐔侯浄閻庯綆鍋嗛崢顏堟⒑閸撴彃浜濈紒璇插暣瀹曨垶骞掑Δ浣哄幐闂佸憡鍔戦崝搴㈡櫠濞戙垺鐓涢柛娑卞枤閸欌偓闂佸搫鏈粙鎴﹀煡婢舵劕纭€闁绘劘灏欓鎴炵節閻㈤潧浠滈柣妤€锕幃锟犲灳閹颁焦缍庨梺鎯х箰濠€閬嶆儗濞嗘劗绠鹃柛鈩兠崝銈夋煕閹惧瓨绶叉い顏勫暣婵″爼宕卞Δ鍐ф樊婵$偑鍊х粻鎾翅缚瑜旈、姘舵晲閸℃瑧鐦堝┑顔斤供閸樿棄鈻嶅⿰鍫熲拺闁告稑锕﹂埥澶愭煕婵犲偆鐓肩€规洜澧楅幆鏃堝Ω閵壯冨箳闂佺懓鍚嬮悾顏堝礉瀹€鈧划璇差潩鏉堛劌鏋戦柟鍏兼儗閻撳牓寮繝鍥ㄧ厱闁哄洢鍔岄悘锟犳煟閹惧鈽夋い顓℃硶閹瑰嫰鎮滃鍡橈紒婵犵數鍋涢幊搴∥涘☉姘潟闁圭儤姊圭€氭岸鏌ょ喊鍗炲妞わ絽鎼—鍐Χ鎼粹€茬盎缂備胶绮敃銏ょ嵁閺嶎厼鎹舵い鎾跺枎閺嬪倿姊洪崨濠冨闁稿妫濋弫宥堢疀濞戞瑢鎷绘繛鎾村焹閸嬫挻绻涙担鍐插娴犳岸姊绘担鍛靛湱鈧稈鏅犻幃锟犳晸閻樿尙鐣洪梺姹囧灮鏋い顐㈡嚇閺屾洟宕煎┑鍥舵闂佸綊鏀卞钘夘潖濞差亝鍤掗柕鍫濇噺閻庢儳鈹戦悩顔肩仾闁挎岸鏌嶇紒妯诲磳闁糕晪绻濆畷銊╊敊閹冪闂傚倷绀侀幉锟犲垂椤栫偛纾归柡宥庡亐閸嬫挸顫濋悙顒€顏� | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈嗐亜椤撶姴鍘寸€殿喖顭烽弫鎰緞婵犲嫮鏉告俊鐐€栫敮濠囨倿閿曞倸纾块柟鍓х帛閳锋垿鏌熼懖鈺佷粶濠碘€炽偢閺屾稒绻濋崒娑樹淮閻庢鍠涢褔鍩ユ径鎰潊闁冲搫鍊瑰▍鍥⒒娴g懓顕滅紒璇插€歌灋婵炴垟鎳為崶顒€唯鐟滃繒澹曢挊澹濆綊鏁愰崨顔藉創閻忓繐绻樺娲川婵犲孩鐣锋繝鐢靛仜閿曘倝顢氶敐鍡欑瘈婵﹩鍘兼禍婊堟⒑缁嬭法绠伴柣銊у厴楠炲繑绻濆顓犲幗闁硅壈鎻徊楣冨汲閳哄懎鍑犳い蹇撳閺€浠嬫煃閵夈劌鐨洪柣顓熺懄閹便劍绻濋崘鈹夸虎閻庤娲﹂崑濠傜暦閻旂⒈鏁嗛柍褜鍓欓埢宥夊Χ閸モ晝锛濇繛杈剧悼閻℃棃宕靛▎鎾寸厽婵°倓鐒︾亸顓熴亜閺囶亞绋荤紒缁樼箓椤繈顢栭埞鐐珚闁哄本娲樺鍕醇濠靛牅鐥梻浣告惈閸婄敻宕戦幘缁樷拻闁稿本鐟ㄩ崗宀€鐥鐐靛煟鐎规洘绮岄埞鎴犫偓锝庡亝濞呮梻绱撻崒姘偓鐑芥倿閿曞倸绀夐柡宥庡幗閸庡孩銇勯弽銊ュ毈婵炲吋鐗楃换娑橆啅椤旇崵鐩庨悗鐟版啞缁诲倿鍩為幋锔藉亹闁圭粯甯╅崝澶愭⒑娴兼瑧鎮奸柛蹇旓耿楠炲啫螖閸涱厾顦ф繝銏f硾閿曪絾绔熼弴銏♀拻濞达絽鎽滅粔鐑樹繆椤愩儲纭剁紒顔肩墛閹峰懘鎼归柅娑氱憹闂備礁鎼粔鏌ュ礉鐎n剚宕查柛鈩冪⊕閻撳繘鏌涢锝囩畵闁逞屽墮閹诧紕绮嬪鍡愬亝闁告劏鏂侀幏娲煟鎼粹剝璐″┑顔炬暬钘熷璺侯儍娴滄粓鏌ㄩ弮鍥跺殭闁诲骏绠撻弻娑㈠煘閸喚浠煎銈嗘尭閵堢ǹ鐣烽崡鐐嶇喖鎳栭埞顑惧€濆缁樼瑹閳ь剙岣胯閸e綊姊洪崨濠佺繁闁搞劍澹嗛弫顕€骞掗弮鍌滐紳闂佺ǹ鏈懝楣冨焵椤掑嫷妫戠紒顔肩墛缁楃喖鍩€椤掆偓閻g兘骞囬弶澶哥炊闂侀潧锛忛崨顖氬脯闂傚倷绀佸﹢閬嶆惞鎼淬劌绐楅柟鎹愵嚙绾惧鏌熺€涙ḿ璐╃憸鐗堝笒缁€鍌炴煕韫囨艾浜圭紒瀣喘濮婄粯鎷呯粙鑳煘濠电偛妯婇崣鍐嚕婵犳碍鏅插璺猴攻椤ユ繈姊洪崷顓€鍦偓娑掓櫊瀹曟洟骞樼紒妯衡偓鍨箾閸繄浠㈤柡瀣枎閳规垿鎮欑拠褍浼愬銈庡亜缁绘帞妲愰幒鎳崇喓鎷犲顔瑰亾閹剧粯鈷戦柟顖嗗懐顔婇梺纭呮珪閹稿墽鍒掗銏犵伋闁哄倶鍎查弬鈧梻浣虹帛閸旀牞銇愰崘顏嗘/鐟滄棃寮婚敐鍛傛棃宕橀妸鎰╁灲閺岋綁鏁愰崶褍骞嬪Δ鐘靛仜濞差厼顕i崼鏇炵閹艰揪绱曢妶璺衡攽閿涘嫬浜奸柛濠冪墵楠炴劙鎳¢妶鍥╃厯闂佺懓顕崑鐔笺€呴弻銉︾厽闁逛即娼ф晶顖炴煕濞嗗繒绠插ǎ鍥э躬椤㈡稑饪伴崘銊ょ帛濠电偛鐡ㄧ划鎾剁不閺嶎厼绠栨俊銈傚亾妞ゎ偅绻堥幃娆擃敆閳ь剟顢旈敓锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤濠€閬嶅焵椤掑倹鍤€閻庢凹鍙冨畷宕囧鐎c劋姹楅梺鍦劋閸ㄥ綊宕愰悙鐑樺仭婵犲﹤鍟扮粻鑽も偓娈垮枟婵炲﹪寮崘顔肩<婵炴垶鑹鹃獮鍫熶繆閻愵亜鈧倝宕㈡禒瀣瀭闁割煈鍋嗛々鍙夌節闂堟侗鍎愰柣鎾存礃缁绘盯宕卞Δ鍐唺缂備胶濮撮…鐑藉蓟閳ュ磭鏆嗛柍褜鍓熷畷浼村箻閼告娼熼梺鍦劋椤ㄥ懘锝為崨瀛樼厽婵☆垵娅i敍宥吤瑰⿰搴濈敖缂佽鲸鎹囧畷鎺戔枎閹烘垵甯┑鐘愁問閸o絿绮婚弽顓熸櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞Х缁辨帡鎮╁畷鍥ㄥ垱闂佸搫鏈惄顖炪€侀弴銏℃櫜闁糕剝鐟Σ鐗堜繆閻愵亜鈧洘顨ラ崫銉х煋闁荤喖鍋婂ḿ鏍煣韫囨挻璐¢柣顓熺懄缁绘盯宕卞Ο鍝勫Б闂佸憡鎸鹃崑鎾舵崲濞戞埃鍋撳☉娆嬬細闁活厹鍊曢湁婵犲﹤绨肩花缁樸亜閺囶亞鎮奸柟椋庡Т闇夐悗锝庡亽濞兼棃姊绘笟鈧ḿ褏鎹㈤幒鎾村弿闁割偁鍎辨儫闂佹寧妫佸銊ц姳婵犳碍鈷戦柛婵嗗閳ь剚鎮傞幃妯衡攽閸垻顦梺鍝勭Р閸斿秹宕h箛娑欏仭婵炲棗绻愰瀛樼箾閸喓鐭掗柡宀€鍠栭、娆撴偂鎼粹懣鈺佄斿Δ濠佺胺闁告鍟块悾鐑藉Ω閳哄﹥鏅i悷婊冮琚欏鑸靛姈閳锋垶鎱ㄩ悷鐗堟悙闁绘帗妞介弻娑㈠Ω閳衡偓閹查箖鏌曢崱妤€鏆炵紒缁樼箞瀹曟帡濡堕崨顕呭悪闂傚倷绀侀幖顐ゆ偖椤愶箑纾块弶鍫氭櫇娑撳秹鏌i悢绋挎珵鐟滅増甯楅弲鏌ユ煕濞戝崬鏋︾痪顓涘亾闂傚倷绀侀幉锟犳偡閵夈儙娑樷攽閸♀晜缍庨梺鎯х箰濠€杈╁閸忛棿绻嗘い鏍ㄧ箓閸氳銇勯敂鍝勫姦婵﹨娅g划娆撳礌閳ュ厖绱f繝鐢靛Л閸嬫捇姊洪鈧粔鎾倿閸偁浜滈柟鍝勭Х閸忓矂鏌涢悢鍝ュ弨闁哄瞼鍠栧畷娆撳Χ閸℃浼� |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-3-20 16:39
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社