wangyanjiayou的个人博客分享 http://blog.sciencenet.cn/u/wangyanjiayou

博文

空间数据分析新突破:基于R语言地理加权回归、主成分分析、判别分析等空间异质性数据分析

已有 295 次阅读 2024-12-4 12:40 |系统分类:科研笔记

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析、地理加权判别分析是处理这类数据的有效模型。本教程从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

专题一 地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二 地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三 地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四 高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型 

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

注:请提前安装所需软件

更多了解

①基于R语言的分位数回归实践

②基于R语言的贝叶斯网络模型应用

③最新基于R语言结构方程模型分析与应用

④R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现

⑤基于R、Python的Copula变量相关性分析及AI大模型应用

⑥基于GeoDa与R语言的空间数据回归实践应用

⑦基于R语言的极值统计学及其在相关领域应用

关 注【科研充电吧】公 众 号,获取海量教程和资源



https://blog.sciencenet.cn/blog-3539141-1462902.html

上一篇:全球气候变化驱动因素预测,气候数据分析处理:温室气体排放、云和气溶胶、野火预测、海冰和叶绿素、海温等
收藏 IP: 111.225.68.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-5 02:57

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部