|
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术,让你系统掌握AI新理论、新方法及其Python代码实现。采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SDD等)、图神经网络(GCN、GAT、GIN等)、强化学习(Q-Learning、DQN等)、深度学习模型可解释性与可视化方法(CAM、Grad-CAM、LIME、t-SNE等)的基本原理及Python代码实现方法。
条件:本教程为进阶学习,需要学员掌握卷积神经网络、循环神经网络等前序基础知识。同时,应具备一定的Python编程基础,熟悉numpy、pandas、matplotlib、scikit-learn、pytorch等第三方模块库。
第一章 注意力(Attention)机制详解
1.注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展)
2.注意力机制的基本原理:用机器翻译任务带你了解Attention机制、如何计算注意力权重?
3.注意力机制的一些变体(硬性注意力机制、软性注意力机制、键值对注意力机制、多头注意力机制、多头注意力机制、……)
4.注意力机制的可解释性(如何使用注意力机制进行模型解释?注意力机制的可视化技术?)
5.案例演示、实操练习
第二章 Transformer模型详解
1.Transformer模型拓扑结构
2.Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)
3.自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……)。
4.计算视觉(CV)领域的Transformer模型:DETR / ViT / Swin Transformer(DERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)
5.案例演示、实操练习
第三章 生成式模型详解
1.变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)
2.生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)
3.扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)
4.跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)
5.案例演示、实操练习
第四章 目标检测算法详解
1.目标检测任务与图像分类识别任务的区别与联系
2.两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )
3.一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)
4.案例演示、实操练习
第五章 图神经网络详解
1.图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
2.图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)
3.图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)
4.图卷积网络(GCN)的工作原理
5.图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络
6.案例演示、实操练习
第六章 强化学习详解
1.强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?
2.Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)
3.深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)
4.案例演示、实操练习
第七章 深度学习模型可解释性与可视化方法详解
1.什么是模型可解释性?为什么需要对深度学习模型进行解释?
2.可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3.类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解
4.t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征
5.案例演示、实操练习
第八章 讨论与答疑
更多应用:包含Python机器学习、数据挖掘、PyTorch机器学习、MATLAB机器学习、R语言【Tidyverse、Tidymodel】、地理加权回归、结构方程模型、贝叶斯网络模型、混合效应(多水平层次嵌套)模型、Copula变量相关性、极值统计学、分位数回归、网络爬虫、科研数据可视化、Nvivo、Citespace和vosviewer文献计量学、AI人工智能等...
关 注【科研充电吧】公 众 号,获取海量教程和资源
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 18:25
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社