|
Python高光谱遥感数据处理与机器学习实践
总结了高光谱遥感技术领域的基础原理与核心概念,采用编程语言复现经典数据处理和应用方法,追踪了最新的技术突破,在消化理解、触类旁通之后,用即使是遥感“小白”也容易接受的方式分享给你。
高光谱遥感课程的第一季:提供一套基于Matlab编程工具的高光谱数据处理方法和应用案例,从基础、方法、实践三方面对高光谱遥感进行深入讲解,通过8个核心概念,4个功能模块,3个典型应用场景,帮助大家了解高光谱遥感的“底层逻辑”,掌握高光谱遥感的“方法论”,并在具体实践案例中,学会运用上述原理和技术方法,提升了学员高光谱技术的应用能力水平。
第二季将继续深入讲解高光谱遥感的技术概念、处理方法和典型应用,并在此基础上,采用python语言复现课程中的所有经典案例,并准备以小专题的形式,交付机器学习的系统性课程,帮你建立属于你自己的高光谱遥感机器学习结构化知识体系和方法指南。
第二季课程依然从基础、方法、实践三方面对高光谱遥感进行讲解。基础篇,站在学员的角度去理解“高光谱”,用大家能听的懂的语言去讲述高光谱的基本概念和理论,帮助学员深入理解这项技术的底层科学机理。方法篇,将高光谱技术与Python编程工具结合起来,聚焦高频技术难点,明确开发要点,快速复现高光谱数据处理和分析过程,并对每一行代码进行解析,对学习到的理论和方法进行高效反馈。实践篇,通过高光谱矿物识别,木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用领域的技术服务方案,结合Python科学计算、可视化、数据处理与机器学习等开源开发库,深入介绍高光谱技术的应用功能开发。
高光谱遥感信息对于我们了解世界具有重要价值,大多数材料在人眼看来都是一样,而在高光谱遥感的观察下,显示出独特的“光谱特征”。这种看到“本色”的能力对于精准农业、地球观测、艺术分析和医学等一系列应用具有革命性的潜力,希望通过通俗易懂的课程让你了解掌握更多高光谱的知识和技术,祝你学习愉快并有所收获!
本教程适合每一个对高光谱技术感兴趣,并想用python进行实践的人。
你将获得:
1、全套的高光谱数据处理方法和应用案例(包含python源码)
2、高光谱与机器学习结合的系统化解决方案
3、最新的技术突破讲解和复现代码
4、科研项目实践和学习方法的专题分享
第一章 高光谱基础
第一课 高光谱遥感简介
什么是高光谱遥感?
高光谱遥感为什么重要?
高光谱遥感与其他遥感技术的区别是什么?
高光谱遥感的历史和发展
第二课 高光谱传感器与数据获取
高光谱传感器类型
如何获取高光谱数据
高光谱数据获取的挑战和限制
第三课 高光谱数据预处理
高光谱图像物理意义
辐射定标
大气校正
光谱平滑和重采样
第四课 高光谱分析
光谱特征提取
降维技术(如PCA、MNF)
高光谱分类、回归、目标检测
混合像元分解方法
第五课 高光谱应用
环境监测(植被分类、水质评估)
农业(作物产量估计、病害检测)
矿产勘探(矿物识别、地质调查)
城市规划(如土地利用/覆盖分类、城市热岛分析)
第二章 高光谱开发基础(Python)
第一课 Python编程介绍
Python简介
变量和数据类型
控制结构
功能和模块
文件处理
第三方包与虚拟环境
第二课 Python空间数据处理
空间数据和Python介绍
Python空间数据处理库介绍
Python读取和写入空间数据文件
Python进行地理空间分析
第三课 python 高光谱数据处理
高光谱数据读取python实现
高光谱数据预处理python实现
高光谱混合像元分解python实现
高光谱数据可视化python实现
第三章 高光谱机器学习技术(python)
第一课 机器学习概述与python实践
机器学习介绍
sciki learn 介绍
数据和算法选择
通用学习流程
机器学习模型
第二课 高光谱机器学习
机器学习技术在高光谱数据处理、分析中的应用介绍
高光谱数据机器学习实践
机器学习模型性能评估和验证技术
第三课 深度学习概述与python实践
深度学习介绍
PyTorch概述
PyTorch开发基础
PyTorch案例分析
第四课 高光谱深度学习
自编码器在高光谱数据分析中的应用
卷积神经网络(CNN)在高光谱数据分析中的应用
循环神经网络(RNN)在高光谱数据分析中的应用
高光谱深度学习案例分析
第四章 典型案例操作实践
第一课 矿物填图案例
岩矿光谱机理
高光谱矿物填图方法介绍
高光谱数据矿物填图(ENVI)
高光谱数据矿物填图(Python)
高光谱数据矿物填图机器学习案例( Python )
第二课 农业应用案例
植被高光谱机理
高光谱数据作物分类(ENVI)
高光谱数据作物识别与分类(Python)
高光谱数据农业应用机器学习案例(Python)
第三课 土壤质量评估案例
土壤光谱机理与特征
土壤质量调查内容
地面光谱测量与采样
无人机高光谱测量与土壤调查
高光谱土壤机器学习程序解析
第四课 木材含水率评估案例
无损检测原理
木材无损检测
木材含水率检测练习
Matlab 高光谱遥感数据处理与混合像元分解
教程从基础、方法、实践三方面对高光谱遥感进行讲解。基础篇,站在学员的角度去理解“高光谱”,用大家能听的懂的语言去讲述高光谱的基本概念和理论,帮助学员深入理解这项技术的底层科学机理。方法篇,将高光谱技术与MATLAB工具结合起来,采用MATLAB丰富的工具箱,快速复现高光谱数据处理和分析过程,对学习到的理论和方法进行高效反馈。同时,充分发挥MATLAB草稿纸式的编程语言的简洁和易操作性,对每一行代码进行解析。实践篇,通过高光谱矿物识别,植物含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用领域的技术服务方案,结合MATLAB矩阵计算、科学数据可视化、数据处理与机器学习、图像处理等功能模块,深入介绍高光谱技术的应用功能开发。
您将通过高光谱遥感、电磁波谱、电磁波谱与物质的作用,光谱成像机理等基础理论,了解高光谱遥感的“底层逻辑”;从高光谱数据处理、光谱特征分析、图像分类、混合像元分解等技术中掌握高光谱遥感的“方法论”;在具体实践案例中,学会运用上述原理和技术方法,提升高光谱技术的应用能力水平。
第一章 理论基础
1、高光谱遥感
高光谱遥感是什么?—高光谱遥感基本概念;
高光谱遥感的三个特点—光谱分辨率高、光谱通道连续、光谱成像;
高光谱遥感为什么有用?—高光谱遥感产生动机和过程,基于cite space的高光谱技术热点分析。
2、高光谱遥感成像与数据处理
数字魔方游戏—高光谱成像机理与成像光谱仪;
谈反射率数据实际上是谈什么?—高光谱遥感数据类型、参数、元数据数据预处理(辐射校正、大气校正);
高光谱为什么要降维?—光谱特征提取,主成分分析(PCA)、最小噪声分离(MNF)。
3、高光谱遥感图像分类与混合像元分解
高光谱遥感图像分类与识别,监督分类与非监督分类。
无处不混合—混合光谱形成、物理机理;
线性与非线性模型—混合像元分解模型,线性光谱混合物理、数学模型,Hapke非线性模型。
第二章 Matlab开发基础
1、matlab软件介绍及安装、常用功能介绍
matlab版本介绍,安装;
Matlab软件界面,常用功能介绍;
过去踩过的那些坑—常见错误和使用注意,路径问题等
2、Matlab高光谱图像处理框架
Matlab高光谱图像处理框架组织与分析;
APP—高光谱查看器的使用介绍。主要界面,波段选择,波段组合图像显示和光谱可视化;
数据读写可视化、增强、校正、降维、光谱解混、光谱匹配等六组函数;
数据预处理(辐射校正、大气校正)Matlab模块介绍及解析。
3、Matlab精选案例及解析
高光谱遥感图像分类案例介绍及解析,SAM图像分类;
高光谱遥感图像解混案例介绍及解析,HFC、N-FINDR、spectralMatch、SID等程序。
第三章 Matlab高光谱数据处理技术
1、高光谱成像数据处理及matlab实现
GF-5、资源02D卫星高光谱图像数据读取可视化(APP、函数)
2D\3D高光谱数据矩阵变换(函数)
2、地面波谱测量数据处理及matlab实现
便携式地物光谱仪(asd),数据读取,可视化(函数)
反射率因子数据计算(函数)
光谱曲线显示可视化(函数)
3、高光谱数据回归定量分析及matlab实现
高光谱回归分析数据整理(函数)
回归学习器,随机森林、线性、支持向量机等(APP、函数)
回归分析结果、误差分析可视化。(APP、函数)
第四章 Matlab混合像元分解技术
1、高光谱端元数量评估及matlab实现
Harsanyi-Farrand-Chang(NWHFC)噪声白化方法、Hysime高光谱数据的程序实现。
Hysime端元数量评估方法代码解析。
2、端元光谱提取及matlab实现
采用PPI、VCA等方法对高光谱数据的端元光谱进行提取。
VCA端元光谱提取的代码解析。
3、端元含量评估及matlab实现
采用最小二乘、稀疏运算等方法对高光谱数据的端元含量进行评估。
最小二乘端元含量评估方法代码解析。
第五章 典型案例操作实践
1.矿物填图案例:以甘肃某地区为例,采用资源02E数据进行绢云母、绿泥石等蚀变矿物信息提取和定量评估。涉及研究区高光谱影像读取、评估矿物种类数目、提取矿物端元光谱、利用光谱库进行识别、评估矿物含量、数据处理、矿物图可视化、结果输出等。
2.木材含水量算法案例:采用回归学习器对森林木材样品数据含水量进行定量分析,涉及高光谱数据读取、写入、高光谱回归分析数据整理,回归学习器,随机森林、线性、支持向量机等含水量评估、误差分析可视化。回归分析结果可视化、结果输出等。
3.土壤质量评估案例:基于航空高光谱、地面波谱测试数据对土壤质量参数进行评估,涉及航空、地面高光谱土壤调查方案设计、高光谱数据的预处理整体,土壤质量参数建模,结果可视化等。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 18:58
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社