Nuclear Science and Techniques分享 http://blog.sciencenet.cn/u/sunhua189 NST报道核科学与技术研究领域的科学发现、技术创新和重要成果

博文

通过JMCT3.0粒子输运程序进行核系统设计

已有 1437 次阅读 2022-11-21 10:57 |系统分类:论文交流

Article title: A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0

高仿真通用三维蒙特卡罗粒子输运程序JMCT3.0

DOI10.1007/s41365-022-01092-0

One sentence summary:

一句话概要:

The latest version 3.0 is updated with new features which enhance the feasibility in nuclear system designs.

最新的JMCT3.0版本开发了新的功能,增强了核系统设计的可行性。


2022_NST_Article_06_v3f_EN科学网.jpg

The Novelty (What)

创新性(主要内容)

The JMCT3.0 (Joint Monte Carlo Transport 3.0) (latest version) has been coupled with depletion, thermal-hydraulics and fuel property for the simulation of reactor nuclear-hot feedback effects. Besides conducting multiphysics coupled calculations, one of JMCT3.0’s latest features is being able to work with the functions of proton, atmosphere and molecule transport. Since JMCT3.0 was developed based on the combinatorial geometry parallel infrastructure, JCOGIN, and the adaptive structured mesh infrastructure, JASMIN, it supports the geometry bodies, structured and unstructured meshes. Besides that, advanced algorithms (e.g. DD, UTD, OTF, and FCSBC) have been developed for JMCT3.0. Therefore, it is capable of simulating high-complexity device problems such as reactor physics, criticality safety analysis, radiation shielding, detector response, nuclear well logging, dosimetry calculations, and reactor nuclear-hot feedback effects. Moreover, high consistency was obtained by comparing JMCT3.0’s results and those from other state-of-the-art Monte Carlo programs like MC21, OpenMC, and KENO-VI. Future effort is being strategized to enhance the computing efficiency. The complication of uncertainty quantification and propagation of errors is an essential area to consider in the future. Furthermore, new algorithms need to be developed to reduce computing fees and JMCT is evolving progressively towards this goal.

JMCT3.0Joint Monte Carlo Transport 3.0)(最新版本)将损耗、热力学和燃料特性相结合,用于反应堆核热反馈效应的模拟。 除了进行多物理耦合计算,JMCT3.0的最新功能之一是能够处理质子、大气和分子传输的功能。 由于JMCT3.0是基于组合几何并行基础结构JCOGIN和自适应结构化网格基础结构JASMIN开发的,它支持几何体、结构化网格和非结构化网格。 此外,还为JMCT3.0开发了先进的算法(如DDUTDOTFFCSBC)。 因此,它能够模拟高复杂设备问题,如反应堆物理、临界安全分析、辐射屏蔽、探测器响应、核测井、剂量学计算和反应堆核热反馈效应。 此外,通过将JMCT3.0的计算结果与MC21OpenMCKeno-VI等其它最先进的蒙特卡罗程序的计算结果进行比较,获得了较高的一致性。 未来的努力正在制定策略,以提高计算效率。 不确定性、量化和误差传播的复杂性是未来需要考虑的一个重要领域。 此外,需要开发新的算法来降低计算费用,JMCT正在朝着这个目标逐步发展。

The Background (Why)

研究背景(主要原因)

The Monte Carlo method has given rise to the development of multiple physical programs for the study of nuclear science engineering, statistical physics, biomedicine, quantum mechanics, molecular dynamics, petroleum geophysical exploration, finance, information, operational research, polymer chemistry and more. Meanwhile, a general high-performance numerical simulation program JMCT was used to simulate neutron, photon, electron, proton, light radiation, atmosphere, and molecule transport. Especially for those problems which the memory exceeds the limit of a single core or node, JMCT can easily simulate by domain decomposition. At present, JMCT can simulate extremely complicated nuclear system problems and the high-precision numerical simulation results have been obtained. JMCT serves as a crucial complement to the existing numerical simulations for nuclear science studies. It will expand continuously and enhance the facilities as well as speed up the advancement of nuclear research.

蒙特卡罗方法为核科学工程、统计物理、生物医学、量子力学、分子动力学、石油地球物理勘探、金融、信息、运筹学、高分子化学等领域的研究带来了多种物理程序的发展。 同时,采用通用高性能数值模拟程序JMCT对中子、光子、电子、质子、光辐射、大气和分子输运进行了数值模拟。 特别是对于内存超过单个核或节点限制的问题,JMCT可以通过区域分解进行模拟。 目前,JMCT可以模拟极其复杂的核系统问题,并取得了高精度的数值模拟结果。 JMCT是对现有核科学研究数值模拟的重要完善。 它将不断扩大和加强设施应用,从而促进核研究的进展。

The SDG impact (Big Why)

SDG影响力(研究意义)

Via Monte Carlo numerical simulation, the physical quantities can easily obtain both measurable and immeasurable values, especially for some extreme conditions which are inaccessible by experiments. This indicates the necessity to keep enhancing the functions and capabilities of JMCT. Besides, the high upgradability of JMCT shows great potential to fill in the demand gap between numerical simulations and experiments. Hence, by developing JMCT3.0, this study fulfils UNSDG Goal 9: Industry, Innovation & Infrastructure.

通过Monte Carlo数值模拟,可以很容易地获得物理量的可测值和不可测值,特别是在一些实验无法达到的极端条件下。 这表明了不断增强JMCT功能和能力的必要性。 此外,JMCT的高可升级性为填补数值模拟与实验之间的需求缺口显示了巨大的潜力。 因此,通过开发JMCT3.0,本研究符合联合国可持续发展目标9:产业、创新和基础设施。

研究团队

中物院高性能数值模拟软件中心粒子输运团队利用“九五”、“十五”、“十一五”期间数值模拟软件研制的积累,基于并行支撑框架JCOGIN,采用数学、物理、计算机分离的技术路线,发展了多种算法,突破了MCNP、TORT等多数商业软件在建模、几何栅元数、计数、内存、并行处理器核数等方面的限制和不可扩展的瓶颈,所有技术指标可扩展,成功研制了集可视建模、高分辨率模拟和可视结果输出为一体的软件系统JPTS/JMCT。软件已实现行业覆盖,在“华龙一号”、“国和一号”、“CFR600”等一大批型号屏蔽、堆芯设计中发挥技术支持作用。




https://blog.sciencenet.cn/blog-3474219-1364655.html

上一篇:最先进的60万千瓦高温气冷堆商用核电站
下一篇:上海光源(SSRF)新设备:激光电子伽玛源束线SLEGS
收藏 IP: 221.225.151.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-7-26 06:17

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部