||
小编导读
纳米加工是制造各种功能纳米材料的一个快速发展的领域。在过去的三十年里,随着纳米科学和纳米工程的发展,各种各样的化学和物理方法被开发用于纳米制造,Janus结构的简易制备是纳米加工领域最困难的挑战之一。来自上海科技大学材料与工程学院的研究人员在期刊Materials Highlights (ISSN: 2666-4933)上发表了题为“Nanofabrication of Janus Fibers through Side-by-Side Electrospinning - A Mini Review”的文章,对Janus纳米纤维的制备进行了评述。
要点介绍
纳米加工的三个最重要的发展方向是:(1)越来越小的皮米技术;(2)更复杂的纳米结构和器件;以及(3)更有序的纳米产品,例如各种无机纳米管阵列和定向纳米纤维。在这些方向中,Janus纳米结构(如Janus纳米纤维和Janus纳米颗粒)的简易和可靠的制备是最困难的挑战之一。
如图1所示,Janus结构反映了两部分的空间并列关系,存在于从地球(一边黑一边白)到叶子(一边储存一边光合作用),到细胞壁卵磷脂双层结构,再到DNA双螺旋结构的所有物质尺度。在Janus世界中,纳米尺度的Janus产品是目前开发新型功能纳米材料的热点话题。本文简述了Janus纳米纤维的制备方法、功能化策略及其进一步发展方向。
图1. Janus世界:从地球到树叶,再到细胞壁的卵磷脂双层结构,再到DNA双螺旋结构。
图2. “自上而下”和“自下而上”纳米制造路线图。
图3. 随着偏心纺丝头的发展,多流体静电纺丝工艺的几种可能性:(A)具有一侧核壳结构的Janus结构;(B)三层Janus结构;(C)具有Janus核的核-壳结构;(D)双侧核壳结构的Janus结构。
研究结论:Janus纳米纤维的制备一直是纳米加工领域的一大挑战。最近关于偏心纺丝头并列静电纺丝的研究提出了一种简单有效的解决方案。有关文献表明,静电纺Janus纳米结构能够提供许多策略来赋予和定制纳米纤维的功能特性。特别是,Janus纤维对于设计新型药物纳米材料非常有用,提供多种成分的协同作用可能。基于偏心轴喷丝头的概念,可以进一步开发一些新型的多流体静电纺丝工艺和并列电喷工艺,并相应地创造一些全新的复杂多室纳米结构。这些复杂的结构将为未来开发高级功能纳米材料提供更强大的平台。新的复合结构可以进一步改善双室结构Janus纤维的潜在应用或优异性能(如能源和环境)。
参考文献 References
[1] Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 2013;113 :5194–261.
[2] Yu DG, Li JJ, Zhang M, Williams GR. High-quality Janus nanofi- bers prepared using three-fluid electrospinning. Chem Commun (Camb) 2017;53:4542–5.
[3] Yu DG, Wang M, Li X, Liu X, Zhu LM, Bligh SWA. Multifluid electrospinning for the generation of complex nanostruc- tures. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12:e1601.
[4] Ma Q, Wang J, Dong X, Yu W, Liu G. Flexible Janus nanoribbons array: a new strategy to achieve excellent electrically conduc- tive anisotropy, magnetism, and photoluminescence. Adv Funct Mater 2015;25:2436–43.
[5] Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, prop- erties, synthesis mechanisms, characterization, and applications. Chem Rev 2012;112:2373–433.
[6] Kang S, Hou S, Chen X, Yu DG, Wang L, Li X, et al. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers (Basel) 2020;12:2421.
[7] Liu Y, Liu X, Liu P, Chen X, Yu DG. Electrospun multiple- chamber nanostructure and its potential self-healing applications. Polymers 2020;12:2413.
[8] Tan Z, Lan W, Liu Q, Wang K, Hussain M, Ren M, et al. Kinetically controlled self-assembly of block copolymers into segmented wormlike micelles in microfluidic chips. Langmuir 2019;35:141–9.
[9] Li F, Wang K, Tan Z, Guo C, Liu Y, Tan H, et al. Solvent quality-mediated regioselective modification of gold nanorods with thiol-terminated polymers. Langmuir 2020;36:15162–8.
[10] Deshmukh R, Mujumdar A, Naik J. Production of aceclofenac-loaded sustained release micro/nanoparticles using pressure homogeni- zation and spray drying. Drying Technol 2018;36:459–67.
[11] Voronin GL, Hettiarachchi CA, Harte FM. High pressure jet spray drying of condensed skim milk results in powders with enhanced interfacial properties. J Food Eng 2021;292:110249.
[12] Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM. An overview of chitosan nanofibers and their applications in the drug delivery process. Curr Drug Deliv 2019;16:272–94.
[13] Wang P, Wang ML, Wan X, Zhou H, Zhang H, Yu DG. Dual-stage release of ketoprofen from electrosprayed core–shell hybrid poly- vinyl pyrrolidone/ethyl cellulose nanoparticles. Mater Highlights 2020;1:14–21.
[14] Huang WD, Xu X, Wang HL, Huang JX, Zuo XH, Lu XJ, et al. Electrosprayed ultra-thin coating of ethyl cellulose on drug nanoparticles for improved sustained release. Nanomaterials (Basel) 2020;10:1758.
[15] Yu DG, Zhu LM, Branford-White CJ, Yang XL. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci 2008;97:3666–90.
[16] Kowalczyk T. Functional micro- and nanofibers obtained by nonwoven post-modification. Polymers (Basel) 2020;12:1087.
[17] Wang ML, Yu DG, Li X, Williams GR. The development and bio-applications of multifluid electrospinning. Mater Highlights 2020;1:1–13.
[18] Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298–415.
[19] Hou J, Yang J, Zheng X, Wang M, Liu Y, Yu DG. A nanofiber-based drug depot with high drug loading for sustained release. Int J Pharm 2020;583:119397.
[20] Ding Y, Dou C, Chang S, Xie Z, Yu DG, Liu Y, et al. Core-shell Eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers (Basel) 2020;12:2034.
[21] Wang M, Hou J, Yu DG, Li S, Zhu J, Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd 2020;846:156471.
[22] Chang S, Wang M, Zhang F, Liu Y, Liu X, Yu DG, et al. Sheath- separate-core nanocomposites fabricated using a trifluid electro- spinning. Mater Design 2020;192:108782.
[23] Wang K, Liu XK, Chen XH, Yu DG, Yang YY, Liu P. Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeu- tic action of helicid. ACS Appl Mater Interfaces 2018;10:2859–67.
[24] Wang M, Li D, Li J, Li S, Chen Z, Yu DG, et al. Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater Design 2020;196:109075.
[25] Yang J, Wang K, Yu DG, Yang Y, Bligh SWA, Williams GR. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater Sci Eng C Mater Biol Appl 2020;111:110805.
[26] Celebioglu A, Uyar T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. Int J Pharm 2020;584:119395.
[27] Zhou T, Wang Y, Lei F, Yu J. In-situ electrospinning for intestinal hemostasis. Int J Nanomedicine 2020;15:3869–75.
[28] Bai Y, Wang D, Zhang Z, Pan J, Cui Z, Yu DG, et al. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic poly- mer nanocomposites. Polym Test 2021;93:106872.
[29] Chi Z, Zhao S, Feng Y, Yang L. On-line dissolution analysis of multiple drugs encapsulated in electrospun nanofibers. Int J Pharm 2020;588:119800.
[30] Yu DG. Preface-bettering drug delivery knowledge from pharma- ceutical techniques and excipients. Curr Drug Deliv 2021;18:2–3. [31] Hou J, Yang Y, Yu DG, Chen Z, Wang K, Liu Y, et al. Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts. Chem Eng J 2021;411:128474.
[32] Zheng X, Kang S, Wang K, Yang Y, Yu DG, Wan F, et al. Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. Int J Pharm 2021;596:120203.
[33] HuangL,YangY,ZhangC,YuH,WangT,DongX,etal.A nanostructured MoO2/MoS2/MoP heterojunction electrocatalyst for the hydrogen evolution reaction. Nanotechnology 2020;31: 225403.
[34] Qi H, Ma Q, Xie Y, Song Y, Tian J, Yu W, et al. Di-anisotropic conductive Janus-type film endued with super-paramagnetism and enhancive red fluorescence. J Phys D 2020;53:225301.
[35] Vass P, Szabó E, Domokos A, Hirsch E, Galata D, Farkas B, et al. Scale-up of electrospinning technology: applications in the pharma- ceutical industry. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1611.
[36] Nagy ZK, Balogh A, Démuth B, Pataki H, Vigh T, Szabó B, et al. High speed electrospinning for scaled-up production of amor- phous solid dispersion of itraconazole. Int J Pharm 2015;480: 137–42.
原文信息
H. Lv, D. Yu, M. Wang, T. Ning, "Nanofabrication of Janus Fibers through Side-by-Side Electrospinning - A Mini Review", Materials Highlights, 2021, DOI: 10.2991/mathi.k.210212.001.
扫描二维码,获取英文原文
https://www.atlantis-press.com/journals/mathi/125953055
关于期刊
Materials Highlights (ISSN: 2666-4933)是Atlantis Press旗下的一本国际性同行评审期刊,采用金色开放获取模式运行(文章可供读者免费阅读、下载、复制和分享),致力于材料科学与工程领域最新科研成果的出版、传播与推广。
期刊主编分别是来自上海科技大学的余灯广教授和来自伦敦大学学院(University College London)的Gareth R. Williams教授,此外还拥有来自美国、欧洲和亚洲知名专家学者组成的编委团队为期刊的同行评审及相关工作保驾护航。
Materials Highlights现已开放Editorial Manager线上投稿平台:https://www.editorialmanager.com/nlpr/default.aspx。欢迎各位专家学者不吝赐稿!
版权声明:
*本文内容由Atlantis Press中国办公室翻译编辑。中文内容仅供参考,一切内容以英文原版为准。如需转载,请在评论区留言,或联系xin.guo@atlantis-press.com。
Atlantis Press是科学、技术和医学(STM)领域的全球开放获取出版品牌,2006年创立于法国巴黎,在巴黎、阿姆斯特丹、北京、郑州和香港设有办事处。我们的使命是通过促进科研界和整个社会更有效地传播和交流知识来支持科学、技术和医学研究的进步。迄今,Atlantis Press的数字内容平台包含超过14万篇开放获取论文供读者免费下载阅读,每年产生2500多万下载量。Atlantis Press是施普林格·自然的一部分。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 02:35
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社