Atlantis Press China分享 http://blog.sciencenet.cn/u/atlantispress 数字出版平台,开放获取先锋

博文

文章荐读 Artery Research | 年轻剑道运动员的中心血压研究:无氧和力量联合训练的意义

已有 2951 次阅读 2021-5-11 16:03 |个人分类:文章荐读|系统分类:论文交流

小编导读

为了保持健康,人们会通过习惯性运动(包括有氧运动和肌肉力量训练)来改善身体机能。众所周知,有氧运动训练可降低中枢收缩压。有趣的是,无氧运动训练(即高强度间歇训练)比中等强度的持续运动训练(一般的有氧运动训练)具有更有效的中枢降压效果。然而,如何结合无氧运动和肌肉力量训练改变中枢血压还不完全清楚。来自日本和韩国的多位学者在期刊Artery ResearcheISSN 1876-4401pISSN 1872-9312) 上合作发表了题为“Central Blood Pressure in Young Kendo Athletes: Implications of Combined Anaerobic and Strength Training”的文章,通过测量对比大学剑道运动员和没有运动习惯的同年龄段健康成年人的中枢血压,分析了无氧训练和力量训练相结合的重要意义。

要点介绍

研究背景:运动训练诱导的中枢性血压(BP)的适应依赖于运动方式。剑道是日本传统武术的一种,它的训练包含无氧和阻力训练,是一种独特的运动方式。然而,习惯性剑道训练对中枢血压的影响尚不明确。研究目的:比较无运动习惯的高水平剑道运动员与同龄对照组的中枢血压。研究方法:36名青年大学生剑道运动员(剑道运动员组)和29名青年习惯久坐者(对照组)参加了研究。通过广义传递函数从颈动脉波形估计中枢血流动力学,用Modelflow方法从肱动脉波形计算心搏量。研究结果:剑道运动员组的中心收缩压和中心脉压均高于对照组(p<0.01)。两组的中心舒张压无差异。心搏量指数;剑道运动员组的心搏量(按体表面积调整)和收缩期主动脉压最大上升率(dP/dTmax)显著高于对照组(p<0.05),反映左心室收缩力,且这些参数与cPP呈显著正相关(SVI:r=0.34p<0.01dP/dTmaxr=0.79p<0.01)。研究结论:习惯性剑道训练可通过提高左室收缩功能来提高中心脉压。注意以下几点:

1.    剑道结合了无氧训练和力量训练的特点,是研究训练适应性的理想方法;也就是说,与久坐对照组相比,剑道运动员拥有更高的无氧能力和肌肉力量。

2.    在本研究中,剑道运动员组的中心血压(中心收缩压和中心脉压)显著高于对照组。

3.    心搏量指数(SVI;剑道运动员组的心搏量(按体表面积调整)和收缩期最大主动脉压升高率(dP/dTmax)也显著高于对照组,但血压未增加。

4.    此外,SVIdP/dTmax与中心脉压呈显著正相关。

5.    这些结果表明,无氧运动和肌力训练相结合可能通过增加左心室收缩功能来增加中心血压。

微信图片_20210511155914.png

1. 剑道运动员组和对照组的中心脉压(cPP)(a)、心搏量指数(SVI)(b)和dP/dTmaxc)。数据以平均值表示± 标准偏差。

微信图片_202105111559141.png

2. 所有参与者(剑道运动员组和对照组)的中心脉压(cPP)与心搏量指数(SVI)(a)和dP/dTmaxb)之间的关系。

总之,剑道运动员组的中枢血压(cSBPcPP)显著高于对照组。剑道运动员组SVIdP/dTmax均显著高于对照组,但AP无显著性差异。SVIdP/dTmax与中心血压呈显著正相关。这些结果表明,习惯性剑道训练可使中枢血压升高,这与常规剑道训练引起的左心室顺应性和前向压力波有关,而与反射波无关

参考文献 References

[1] Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 6th ed., London, UK: Hodder Arnold; 2011.

[2] Safar ME, London GM. Therapeutic studies and arterial stiff- ness in hypertension: recommendations of the European Society of Hypertension. The Clinical Committee of Arterial Structure and Function. Working Group on Vascular Structure and Function of the European Society of Hypertension. J Hypertens 2000;18:1527–35.

[3] Belz GG. Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 1995;9:73–83.

[4] O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 2007;50:1–13.

[5] Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific state- ment from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007;116:572–84.

[6] Kawamoto R, Kohara K, Katoh T, Kusunoki T, Ohtsuka N, Abe M, et al. Effect of weight loss on central systolic blood pressure in elderly community-dwelling persons. Hypertens Res 2014; 37:933–8.

[7] Clark T, Morey R, Jones MD, Marcos L, Ristov M, Ram A, et al. High-intensity interval training for reducing blood pressure: a ran- domized trial vs. moderate-intensity continuous training in males with overweight or obesity. Hypertens Res 2020;43:396–403.

[8] Hanssen H, Minghetti A, Magon S, Rossmeissl A, Papadopoulou A, Klenk C, et al. Superior effects of high-intensity interval train- ing vs. moderate continuous training on arterial stiffness in episodic migraine: a randomized controlled trial. Front Physiol 2017;8:1086.

[9] Bertovic DA, Waddell TK, Gatzka CD, Cameron JD, Dart AM, Kingwell BA. Muscular strength training is associated with low arterial compliance and high pulse pressure. Hypertension 1999;33:1385–91.

[10] All Japan Kendo Federation. Available from: https://www.kendo. or.jp/ (accessed January 5, 2021).

[11] International Kendo Federation. Available from: https://www. kendo-fik.org/ (accessed January 5, 2021).

[12] Hayashi K, Horiyama K, Iho K, Washimi K, Nakata M. Longitudinal changes of upper limb, lower limb and trunk muscle strength in kendo players. Res J Budo 1993;25:21–9 (in Japanese).

[13] Kendo Renmei ZN. The official guide for kendo instruction. Tokyo, Shusansha: All Japan Kendo Federation; 2011.

[14]  Katsuki T, Demura S, Tanabe M. Physical characteristics of college male kendo competitors. Res J Budo 1993;26:15–24 (in Japanese).

[15]  Tagawa K, Takahashi A, Yokota A, Sato T, Maeda S. Aortic dia- stolic pressure decay modulates relation between worsened aortic stiffness and myocardial oxygen supply/demand balance after resistance exercise. J Appl Physiol 2019;127:737–44.

[16]  Sugawara J, Tanabe T, Miyachi M, Yamamoto K, Takahashi K, Iemitsu M, et al. Non-invasive assessment of cardiac output during exercise in healthy young humans: comparison between Modelflow method and Doppler echocardiography method. Acta Physiol Scand 2003;179:361–6.

[17]  Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 1993;74:2566–73.

[18]  Wesseling KH, de Wit B, Weber JAP, Smith NT. A simple device for the continuous measurement of cardiac output. Its model basis and experimental verification. Adv Cardiovasc Phys 1983;5:16–52.

[19]  Fujimoto S, Watanabe T, Sakamoto A, Yukawa K, Morimoto K. [Studies on the physical surface area of Japanese. 18. Calculation formulas in three stages over all ages]. Jap J Hyg 1968;23:443–50 (in Japanese).

[20] Sugawara J, Hayashi K, Yokoi T, Tanaka H. Age-associated elon- gation of the ascending aorta in adults. JACC Cardiovasc Imaging 2008;1:739–48.

[21] Nualnim N, Barnes JN, Tarumi T, Renzi CP, Tanaka H. Comparison of central artery elasticity in swimmers, runners, and the sedentary. Am J Cardiol 2011;107:783–7.

[22] Tagawa K, Choi Y, Ra SG, Yoshikawa T, Kumagai H, Maeda S. Resistance training-induced decrease in central arterial com- pliance is associated with decreased subendocardial viability ratio in healthy young men. Appl Physiol Nutr Metab 2018; 43:510–16.

[23] Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005; 18:3S–10S.

[24] Mahdiabadi J, Gaeini AA, Kazemi T, Mahdiabadi MA. The effect of aerobic continuous and interval training on left ven- tricular structure and function in male non-athletes. Biol Sport 2013;30:207–11.

 

原文信息

M. YoshiokaK. TagawaY. TochigiT. SatoJ. ParkR. MommaY. ChoiJ. SugawaraS. Maeda, "Central Blood Pressure in Young Kendo Athletes: Implications of Combined Anaerobic and Strength Training", Artery Research, 2021, DOI: 10.2991/artres.k.201225.001.

微信图片_202105111559142.png

扫描二维码,获取英文原文

https://www.atlantis-press.com/journals/artres/125951134

关于期刊

Journal_Cover_-_Artery_Research.jpg

Artery Research (eISSN 1876-4401,pISSN 1872-9312) 是国际动脉结构和生理学研究协会的官方期刊,与Atlantis Press合作出版,旨在促进有关病理生理学、流行病学、动脉结构和功能的检测、调查和治疗等知识的进步和信息的传播。

Artery Research 由来自英国卡迪夫城市大学(Cardiff Metropolitan University)John Cockcroft教授担任主编。本刊执行严格的同行评审,采取开放获取(Open Access)模式出版发行。期刊已被DOAJ,Web of Science (IF 0.519), Scopus (CiteScore 1.40), CNKI, 万方等数据库收录。平均一审周期35天,拒稿率53.7%欢迎各位专家学者赐稿!

 

版权声明:

*本文内容由Atlantis Press中国办公室编辑。欢迎转发。如需转载,请在留言区留言,或联系xin.guo@atlantis-press.com


AP Logo.jpg

Atlantis Press是科学、技术和医学(STM)领域的全球开放获取出版品牌,2006年创立于法国巴黎,在巴黎、阿姆斯特丹、北京、郑州和香港设有办事处。我们的使命是通过促进科研界和整个社会更有效地传播和交流知识来支持科学、技术和医学研究的进步。迄今,Atlantis Press的数字内容平台包含超过14万篇开放获取论文供读者免费下载阅读,每年产生2500多万下载量。Atlantis Press施普林格·自然的一部分。



https://blog.sciencenet.cn/blog-3453320-1286028.html

上一篇:文章荐读 JAIMS | 知识图谱助力探索微生物-肠-脑轴与精神疾病的关系
下一篇:文章荐读 MATHI | 并列静电纺丝法制备Janus纤维的研究进展
收藏 IP: 111.118.204.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-28 21:30

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部