zhang2sha的个人博客分享 http://blog.sciencenet.cn/u/zhang2sha

博文

何时该用Reduced Major Axis Regression?

已有 1159 次阅读 2024-7-24 22:31 |系统分类:科研笔记

通常我们再进行回归分析时,认为只有因变量y有测量误差,而自变量x是没有测量误差的,所以我们的回归公式中,误差项也全部来自于y。但有时候,如果x和y都存在误差,且我们也想把x的测量误差考虑在内,那么一般的模型是做不到的。Reduced Major Axis Regression便是专门针对这种问题的。Harper (2016) 对Reduced Major Axis Regression的适用场景做了很好的描述:

The theoretical underpinnings of standard least-squares (LS) regression analysis are based on the assumption that the independent variable (often thought of as x) is measured without error as a design variable. The dependent variable (often labeled y) is modeled as having uncertainty or error. Both independent and dependent measurements may have multiple sources of error. Thus, the underlying least-squares regression assumptions can be violated. Reduced major axis (RMA) regression is specifically formulated to handle errors in both the x and y variables. It is an alternative to least squares and demonstrates the importance of understanding the assumptions underlying statistical procedures.

     Reduced Major Axis Regression和一般的最小二乘回归的结果,有时候还是有明显区别。比如Harper (2016) 给出的案例中:

图片

      Reduced Major Axis Regression的实际应用案例(Fraley et al. 2020)

图片

     在R中,lmodel2包就可以轻松完成这一分析并作图。lmodel2包地址:https://rdrr.io/cran/lmodel2/man/lmodel2.html

参考文献:

Fraley, K. M., H. J. Warburton, P. G. Jellyman, D. Kelly, and A. R. McIntosh. 2020. Do body mass and habitat factors predict trophic position in temperate stream fishes? Freshwater Science 39:405-414.

Harper, W. V. 2016. Reduced Major Axis Regression. Pages 1-6 Wiley StatsRef: Statistics Reference Online.

欢迎大家关注我的微信个人公众号--“二傻统计”

二傻统计.jpg



https://blog.sciencenet.cn/blog-3442043-1443608.html

上一篇:三问AIC值
下一篇:那些由Meta分析完成的传世大作!
收藏 IP: 111.197.238.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-25 06:45

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部