|
通常我们再进行回归分析时,认为只有因变量y有测量误差,而自变量x是没有测量误差的,所以我们的回归公式中,误差项也全部来自于y。但有时候,如果x和y都存在误差,且我们也想把x的测量误差考虑在内,那么一般的模型是做不到的。Reduced Major Axis Regression便是专门针对这种问题的。Harper (2016) 对Reduced Major Axis Regression的适用场景做了很好的描述:
“The theoretical underpinnings of standard least-squares (LS) regression analysis are based on the assumption that the independent variable (often thought of as x) is measured without error as a design variable. The dependent variable (often labeled y) is modeled as having uncertainty or error. Both independent and dependent measurements may have multiple sources of error. Thus, the underlying least-squares regression assumptions can be violated. Reduced major axis (RMA) regression is specifically formulated to handle errors in both the x and y variables. It is an alternative to least squares and demonstrates the importance of understanding the assumptions underlying statistical procedures.”
Reduced Major Axis Regression和一般的最小二乘回归的结果,有时候还是有明显区别。比如Harper (2016) 给出的案例中:
Reduced Major Axis Regression的实际应用案例(Fraley et al. 2020):
在R中,lmodel2包就可以轻松完成这一分析并作图。lmodel2包地址:https://rdrr.io/cran/lmodel2/man/lmodel2.html
参考文献:
Fraley, K. M., H. J. Warburton, P. G. Jellyman, D. Kelly, and A. R. McIntosh. 2020. Do body mass and habitat factors predict trophic position in temperate stream fishes? Freshwater Science 39:405-414.
Harper, W. V. 2016. Reduced Major Axis Regression. Pages 1-6 Wiley StatsRef: Statistics Reference Online.
欢迎大家关注我的微信个人公众号--“二傻统计”
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 06:45
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社