YucongDuan的个人博客分享 http://blog.sciencenet.cn/u/YucongDuan

博文

AI时代知识产权的未来:从概念空间到语义空间的进阶

已有 1111 次阅读 2023-12-13 14:54 |系统分类:论文交流

AI时代知识产权的未来:从概念空间到语义空间的进阶

 

段玉聪(Yucong Duan)

DIKWP-AC人工意识实验室

AGI-AIGC-GPT评测DIKWP(全球)实验室

DIKWP research group, 海南大学

摘要

在DIKWP模型的引领下,知识产权(IP)管理正从传统的概念驱动模式向基于深层语义理解的系统演进。这种进化影响到知识产权的全过程:申请、审查、维权和应用。未来知识产权(IP)管理将跳出传统的自然语言表达限制,转向基于DIKWP(数据、信息、知识、智慧、意图)语义空间的处理模式。这种转变意味着从简单的文本处理升级到深层次语义理解和决策,有效提高知识产权管理的效率、精确性和适应性。本报告深入探索了这一转变对未来知识产权管理的深远影响,突出了AI和大数据技术在其中的关键作用。

引言

随着人工智能和大数据技术的发展,知识产权管理正从基于文字的概念处理转向更加高级的语义空间分析。DIKWP模型作为这一转变的核心,提供了从数据收集到意图理解的全面框架,推动知识产权管理的创新和发展。

知识产权申请的转变

  • 数据层(D):利用先进算法从海量数据中快速筛选并预处理IP申请相关信息。

  • 信息层(I):通过机器学习技术分析申请文本,捕捉关键的创新要素。

  • 知识层(K):综合市场趋势、法律规则和技术背景,评估申请的可行性和潜在价值。

知识产权审查的转变

  • 智慧层(W):运用人工智能模拟专家思维,进行深度的审查和评估。

  • 意图层(P):解析申请者的真实意图,确保审查的全面性和准确性。

知识产权保护的转变

  • 数据层(D):实时监控市场动态,自动识别潜在侵权行为。

  • 智慧层(W):分析侵权行为背后的动机和模式,形成有效的保护策略。

知识产权维权的转变

  • 知识层(K)和智慧层(W):结合法律知识和市场分析,制定有力的维权行动。

  • 意图层(P):预判对方策略,制定相应的维权措施。

从概念空间到语义空间的转变

  • 超越文字限制:未来的IP管理将不再局限于文字表达,而是利用AI深入理解申请的语义内容。

  • 动态适应性:系统将根据市场和技术的变化动态调整IP策略。

  • 个性化定制:根据每项IP的特点,制定个性化的管理和维权策略。

结论

未来知识产权管理的演进,将使其从依赖于文字的概念处理,转向基于DIKWP语义空间的高效管理。DIKWP模型的应用标志着知识产权管理从传统的概念驱动模式向语义驱动的新时代的转变。这一变革将极大地提升知识产权管理的效率和精确性,同时为知识产权领域带来创新和发展。通过这种进阶,我们可以更有效地保护和利用创新,为全球创新生态系统注入新的活力,促进全球创新生态系统的持续繁荣。


段玉聪,海南大学计算机科学与技术学院教授,博士生导师, 第一批入选海南省南海名家计划、海南省领军人才,2006年毕业于中国科学院软件研究所,先后在清华大学、首都医科大学、韩国浦项工科大学、法国国家科学院、捷克布拉格查理大学、意大利米兰比克卡大学、美国密苏里州立大学等工作与访学。现任海南大学计算机科学与技术学院学术委员会委员、海南大学数据、信息、知识、智慧、意图DIKWP创新团队负责人、兼北京信用学会高级顾问、重庆警察学院特聘研究员、海南省委双百人才团队负责人、海南省发明协会副会长、海南省知识产权协会副会长、海南省低碳经济发展促进会副会长、海南省农产品加工企业协会副会长、海南省人工智能学会高级顾问、美国中密西根大学客座研究员及意大利摩德纳大学的博士指导委员会委员等职务。自2012年作为D类人才引进海南大学以来,累计发表论文260余篇,SCI收录120余次,ESI高被引11篇,引用统计超过4300次。面向多行业、多领域设计了241件(含15件PCT发明专利)系列化中国国家及国际发明专利,已获授权第1发明人中国国家发明专利及国际发明专利共85件。2020年获吴文俊人工智能技术发明三等奖;2021年作为程序委员会主席独立发起首届国际数据、信息、知识与智慧大会-IEEE DIKW 2021;2022年担任IEEE DIKW 2022大会指导委员会主席;2023年担任IEEE DIKW 2023大会主席;2022年获评海南省最美科技工作者(并被推全国);2022年与2023年连续入选美国斯坦福大学发布的全球前2%顶尖科学家的“终身科学影响力排行榜”榜单。参与研制IEEE金融知识图谱国际标准2项、行业知识图谱标准4项。2023年发起并共同举办首届世界人工意识大会(Artificial Consciousness 2023, AC2023)。

 

 

数据(Data)可视为我们认知中相同语义的具体表现形式。通常,数据代表着具体的事实或观察结果的存在语义确认,并通过与认知主体已有认知对象的存在性包含的某些相同语义对应而确认为相同的对象或概念。在处理数据时,我们常常寻求并提取标定该数据的特定相同语义,进而依据对应的相同语义将它们统一视为一个相同概念。例如,当我们看到一群羊时,虽然每只羊可能在体型、颜色、性别等方面略有不同,但我们会将它们归入“羊”的概念,因为它们共享了我们对“羊”这个概念的语义理解。相同语义可以是具体的如识别手臂时可以根据一个硅胶手臂与人的手臂的手指数量的相同、颜色的相同、手臂外形的相同等相同语义进行确认硅胶手臂为手臂,也可以通过硅胶手臂不具有真实手臂的可以旋转对应的由“可以旋转”定义的相同语义,而判定其不是手臂。

 

信息(Information)则对应认知中不同语义的表达。通常情况下,信息指的是通过特定意图将认知DIKWP对象与认知主体已经认知的数据、信息、知识、智慧或意图联系起来,产生新的语义关联。在处理信息时,我们会根据输入的数据、信息、知识、智慧或意图,找出它们被认知的DIKWP对象的不同之处,对应不同的语义,并进行信息分类。例如,在停车场中,尽管所有的汽车都可以归入“汽车”这一概念,但每辆车的停车位置、停车时间、磨损程度、所有者、功能、缴费记录和经历都代表着信息中不同的语义。信息对应的不同语义经常存在于认知主体的认知中,常常未被显式表达出来,例如抑郁症患者可能用自己情绪“低落”来表达自己当前的情绪相对自己以往的情绪的下降,但这个“低落”对应的信息因为其对比状态不被听众了解而不能被听众客观感受到,从而成为该患者自己主观的认知信息。

 

知识(Knowledge)对应于认知中的完整语义。知识是通过观察和学习获得的对世界的理解和解释。在处理知识时,我们通过观察和学习抽象出至少一个完整语义对应的概念或模式。例如,通过观察我们得知所有的天鹅都是白色,这是我们通过收集大量信息后对“天鹅都是白色”这一概念的完整认知。

 

智慧(Wisdom)对应伦理、社会道德、人性等方面的信息,是一种来自文化、人类社会群体的相对于当前时代固定的极端价值观或者个体的认知价值观。在处理智慧时,我们会整合这些数据、信息、知识、智慧,并运用它们来指导决策。例如,在面临决策问题时,我们会综合考虑伦理、道德、可行性等各个方面的因素,而不仅仅是技术或效率。

 

意图(Purpose)可以看作是一个二元组(输入,输出),其中输入和输出都是数据、信息、知识、智慧或意图的内容。意图代表了我们对某一现象或问题的理解(输入),以及我们希望通过处理和解决该现象或问题来实现的目标(输出)。在处理意图时,人工智能系统会根据其预设的目标(输出),处理输入的内容,通过学习和适应,使输出逐渐接近预设的目标。





https://blog.sciencenet.cn/blog-3429562-1413692.html

上一篇:整数语义及其在数学推理中的作用
下一篇:Integer semantics and its role in mathematical reasoning
收藏 IP: 59.50.85.*| 热度|

1 张学文

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-22 09:00

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部