||
softmax2 = nn.Softmax(dim=2) #三维数据的最后一维
y=torch.rand(3,2,4)
y
Out[190]:
tensor([[[0.4634, 0.1223, 0.8533, 0.5247],
[0.0603, 0.1866, 0.1680, 0.5770]],
[[0.8840, 0.2867, 0.2902, 0.6421],
[0.5726, 0.8274, 0.3731, 0.0680]],
[[0.8073, 0.2921, 0.5206, 0.0273],
[0.2502, 0.5895, 0.0978, 0.5977]]])
z=softmax2(y)
z
Out[192]:
tensor([[[0.2352, 0.1673, 0.3474, 0.2501],
[0.2031, 0.2304, 0.2261, 0.3404]],
[[0.3463, 0.1906, 0.1912, 0.2719],
[0.2693, 0.3475, 0.2206, 0.1626]],
[[0.3563, 0.2129, 0.2675, 0.1633],
[0.2138, 0.3001, 0.1835, 0.3026]]])
z.sum(0)
Out[193]:
tensor([[0.9378, 0.5707, 0.8061, 0.6853],
[0.6861, 0.8780, 0.6303, 0.8056]])
z.sum(1)
Out[194]:
tensor([[0.4383, 0.3977, 0.5735, 0.5905],
[0.6156, 0.5380, 0.4118, 0.4345],
[0.5701, 0.5130, 0.4511, 0.4659]])
z.sum(2)
Out[195]:
tensor([[1., 1.],
[1., 1.],
[1., 1.]])
softmax3 = nn.Softmax(dim=-1) #三维数据的最后一维
zz = softmax3(y)
zz.sum(2)
Out[198]:
tensor([[1., 1.],
[1., 1.],
[1., 1.]])
点滴分享,福泽你我!Add oil!
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-13 14:57
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社