ChinesePhysicsL的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsL

博文

《物理世界》研究进展:非对称人工自旋冰-超导器件中的磁非互易超导效应

已有 216 次阅读 2024-8-30 21:36 |系统分类:论文交流

1.gif

EXPRESS LETTER

Magnetic Nonreciprocity in a Hybrid Device of Asymmetric Artificial Spin-Ice-Superconductors

Chong Li (李冲), Peiyuan Huang (黄培源), Chen-Guang Wang (王晨光), Haojie Li (李浩杰), Yang-Yang Lyu (吕阳阳), Wen-Cheng Yue (岳文诚), Zixiong Yuan (袁子雄), Tianyu Li (李甜雨), Xuecou Tu (涂学凑), Tao Tao (陶涛), Sining Dong (董思宁), Liang He (何亮), Xiaoqing Jia (贾小氢), Guozhu Sun (孙国柱), Lin Kang (康琳), Huabing Wang (王华兵), Peiheng Wu (吴培亨), and Yong-Lei Wang (王永磊)

Chin. Phys. Lett. 41 067402 (2024 )

DOI: 10.1088/0256-307X/41/6/067402

研究快讯

非对称人工自旋冰-超导器件中的磁非互易超导效应

设计了一种全新的人工自旋冰和超导异质结构器件,实现了奇特的单一磁场方向的超流输运效应,即磁非互易超导效应。该研究提出了磁场驱动的超导二极管概念,为设计低能耗的电子芯片提供了具有新功能的原型器件。

This work has been highlighted in a research update published in Physics World.

Spin-ice superconductors display magnetic nonreciprocity

Isabelle Dumé

微信截图_20240830213532.png

Device designers: Wen-Cheng Yue, Yong-Lei Wang, Chong Li and Yang-Yang Lyu are members of the Nanjing University superconducting and magnetic mesoscopic systems team. (Courtesy: Yong-Lei Wang)

Researchers in China have fabricated a new hybrid superconducting device from a special type of material known as an artificial spin ice (ASI). The innovative structure, which is made of asymmetric nanomagnets, could be used to build magnetic-field-driven superconducting diodes for use in energy-efficient electronics.

ASIs get their name from the fact that at low temperatures, their magnetic moments adopt the same disordered pattern typified by proton spins in water ice. They have a tetrahedral structure, with rare-earth ion moments occupying the corners in a way that obeys the so-called “ice rules”: two of the moments point into the tetrahedron, while two point out of it. In this configuration, the moments are unable to align, and the material is said to be geometrically frustrated.

The behaviour of the new ASI-based device is driven by a phenomenon known as the magnetic nonreciprocal effect, in which a material displays zero resistance along the direction of an applied magnetic field while continuing to have resistance in the opposite direction. “This is analogous to the behaviour of a superconducting diode and is a recently-discovered effect that is creating a flurry of interest in the field,” explains Yong-Lei Wang of Nanjing University, who led the research.

Asymmetric nanomagnets

To induce magnetic nonreciprocity, Wang and colleagues made their ASI from asymmetric nanomagnets. They created these nanomagnets by depositing a thin film of molybdenum germanium superconductor onto a silicon wafer using photolithography and magnetron sputtering techniques. They then fabricated the artificial spin ice on top of this structure, using electron beam lithography and evaporation to create an ASI with the nanomagnets arranged in a square lattice.

“Distinct from all previous ASIs, however, this structure contains asymmetric nanomagnets as opposed to symmetric ones,” explains Wang. “This leads to a novel superconducting pinning potential, resulting in the asymmetric motion of superconducting vortices when positive and negative magnetic fields are applied, thus allowing us to observe magnetic nonreciprocity.”

The Nanjing team has been working on ASI-superconductor heterostructures since 2018, when its members first reported on switchable geometric frustration and superconducting vortex diode effects. Two years later, the researchers made a switchable superconductor and programmable flux-quantum Hall effect device using another ASI-superconductor hybrid. Then, in 2021, they followed this by producing a superconducting diode in arrays of conformal-patterned nanoholes in superconducting thin films. “This last device works thanks to the spatial inversion symmetry breaking from the nanoholes and it allowed us to understand that the asymmetric nanomagnets in ASIs could induce unique symmetry breaking and lead to interesting superconducting effects,” Wang says.

The team’s findings could have implications for the development of advanced superconducting electronics, he tells Physics World. “Being able to control and reconfigure vortex dynamics in superconductors can lead to innovative devices such as magnetic field-driven superconducting diodes and rectifiers. These applications are particularly promising for low-power electronics, neuromorphic computing, and advanced sensing technologies.”

The researchers now plan to examine how temperature affects the magnetic nonreciprocal effects they observed. “We will also study the hysteresis behaviour of in-plane magnetic fields to enhance the nonreciprocal ratio of these effects,” reveals Wang. “We also plan to apply our method to other types of ASI structures, such as kagome-ASI and pinwheel-ASI, to explore a wider range of superconducting properties and functionalities.”

They detail their present work in Chinese Physics Letters.

© Copyright 2024 IOP Publishing Ltd

中国物理学会旗舰期刊

1

国家自然科学奖一等奖代表性成果一项

2

未来科学大奖代表性成果二项

3

中国科协优秀科技论文5篇

4

高被引原创论文数量在国内同类期刊中名列前茅

研究快讯回顾

光子二阶空间量子相干性的主动调控

微波光场量子比特编码的可拓展性量子投票器

通用机器学习Kohn-Sham哈密顿量

非对称人工自旋冰-超导器件中的磁非互易超导效应

麦克斯韦妖和爱因斯坦-泼多尔斯基-罗森导引

多带Gutzwiller近似下La3Ni2O7t-J模型中的磁性与超导

混阳离子和混阴离子元素演变化合物稳定性差异的起源

固态氮(λ-N2)的压致带隙收缩

利用高频时间周期驱动调控四维拓扑绝缘体的第二类陈数

应力调控下钙铁石到RP相变的原位原子尺度观测

追求量子绝热演化中速度极限和瞬时能量消耗的平衡

声表面波与量子霍尔效应的相互作用

用几何观点构造霍普夫绝缘体

由8点位原胞诱导的混合趋肤拓扑效应及其拓扑边界态局域的任意可调

基于机器学习的强耦合常数分析及其应用

PbTe纳米线中的硬超导近邻能隙

转角石墨烯畴内/畴间的局域转角分布可视化

含底强子的两体强子弱衰变

粲味拉姆达超子的电磁形状子研究

量子临界调控的量子点功率捕获

利用FAST搜寻超新星遗迹中的射电脉冲星

流匹配方法计算自由能

超流液氦表面悬浮二维电子体系的实现、表征及操控

利用实时非绝热分子动力学方法研究单分子结中的电荷输运过程

VASP2KP: 通过第一性方法计算kp模型和朗德g因子

共线反铁磁中的手性狄拉克费米子

三类Kagome结构的高通量计算及热力学稳定性评估

利用深度学习预测复杂网络的热导特性

La3Ni2O7高温超导电性的微观有效模型及密度矩阵重正化群研究

活性转子系统的局域转动阻塞和多级超均匀性

拓扑半金属磷化钼中的巨大非线性光学效应

具有超宽温域、低电流可调性的巨二维斯格明子拓扑霍尔效应

3.jpg

阅读原文



https://blog.sciencenet.cn/blog-3426263-1448932.html

上一篇:研究快讯 | 光子二阶空间量子相干性的主动调控
下一篇:研究快讯 | 自旋为1的玻色-爱因斯坦凝聚体中环暗孤子及其后形成的涡旋的动力学
收藏 IP: 59.152.39.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-13 08:57

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部