北京时间2021年3月12日凌晨,中国科学院北京生命科学研究院赵方庆团队 在Nature Biotechnology 杂志上发表了题为“Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long” 的文章。
该团队开发了一种高效测定环形RNA 全长转录本的实验和计算方法:利用随机引物对环形RNA进行的滚环反转录扩增后,使用纳米孔测序技术对环形RNA的全长序列进行直接测序,并开发了CIRI-long 算法,实现对长测序读段中的环形RNA序列进行识别和全长重构 。
实验结果表明,与传统的环形RNA二代测序技术相比,该方法将环形RNA检测灵敏度提升了20倍,并可实现对不同长度(<100bp - 5kb)的环形RNA全长序列的无偏识别,大幅提升了环形转录本的重构能力,为其功能研究提供了重要的实验方法和计算工具。
环形RNA是一类在真核生物中广泛存在的具有特殊环状结构的RNA分子。目前研究表明,在生物体内,环形RNA主要通过其序列特征,发挥miRNA海绵、RBP海绵以及翻译短肽等重要的生物学功能。因此,确定环形RNA的全长序列,是进行环形RNA功能研究的重要基础。 由于环形RNA的内部序列与线性mRNA分子高度相似,在数据中很难区分来自环形RNA和线性RNA分子的读段。因此,目前研究方法对于环形RNA结构的识别能力主要被二代测序的读长所限制,对于长度较长(>500bp)的环形RNA分子,仍然缺少有效的全长重构手段。 在此基础上,赵方庆团队构建并优化了环形RNA建库流程,使用随机引物对环形RNA进行滚环反转录扩增,结合片段长度筛选 (~1kb),针对长度更长的目标cDNA片段进行富集,最后使用纳米孔测序技术,实现了对目标环形RNA的全长序列进行直接测定。 同时,研究人员进一步开发了CIRI-long算法,对纳米孔测序数据中的环形RNA结构进行了识别,并使用偏序比对算法,对纳米孔测序带来的测序错误进行了校正。随后,CIRI-long基于基因注释和剪接信号信息,提供单一样本内和多样本间结果的整合与校正方法,实现了环形RNA的准确识别和全长重构。 为了评估CIRI-long方法的准确性和效率,研究人员利用模拟数据和多次实验重复,对CIRI-long结果进行了综合评估,发现该方法具有较高的灵敏度,并且与实验结果保持了高度的一致性。 同时,结合二代测序结果以及公共数据库的全面分析表明,CIRI-long可以有效地对高表达环形RNA进行识别,且与二代测序方法相比,CIRI-long对环形RNA的检测效率有着近20倍的提升,对表达丰度较低的环形RNA有着更好的识别效果,同时可以识别到长度更长的环形RNA分子,大幅提升了环形RNA全长的检测能力。 图2,基于Nanopore测序的环形RNA实验技术。 利用该方法,研究人员进一步发现了一类由内含子自连形成的新型环形RNA分子(Intronic self-ligated circRNA)。这类环形RNA具有特殊的剪接位点内侧的GT-AG信号和较高的两侧序列保守性,在之前的工作中缺乏普遍的研究。 此外,研究人员在小鼠不同组织中,对内含子自连型环形RNA的表达模式进行了进一步探究,并发现了Tpm1基因可以产生一个长度为767 bp的内含子自连型环形RNA ——circTpm1。与Tpm1基因的其他内含子相比,该分子成环区域具有相对较高的保守性,并且与线性mRNA在组织间具有截然不同的表达模式,说明circTpm1并非其母本基因转录的副产物,可能具有一定的生物学功能。 综上,研究人员开发了基于纳米孔测序技术的环形RNA全长识别流程CIRI-long,通过结合滚环反转录扩增和纳米孔长读长测序技术,可以直接测定环形RNA的全长序列,实现了对环形RNA的高灵敏度检测和内部结构重构。 与传统的二代测序方法相比,CIRI-long大幅提升了环形RNA全长重构能力,并可实现与二代测序相近的分析成本。同时,CIRI-long提供了样本间整合分析的工具,并针对纳米孔测序的高错误率建立了有效校正方法,为环形RNA的功能研究提供了重要的方法学工具,具有很高的应用价值。 该研究由中科院北京生命科学研究院赵方庆研究员团队完成,并获得了国家自然科学基金委杰出青年基金、科技部重点研发计划及中国科学院的经费支持。赵方庆团队在前期的工作中建立了环形RNA识别、可变剪接检测及定量等一系列方法,相关研究发表在Nature Biotechnology (2021)、Nature Communications (2016, 2020)、Genome Biology (2015, 2020)、Briefings in Bioinformatics (2018)、Trends in Genetics (2018)、Genome Medicine (2019)、Cell Reports (2019)和Bioinformatics (2020)。 这些研究丰富了我们对环形RNA的组成及结构的认识,为深入了解这一类特殊的RNA分子提供了重要工具和数据支持。 https://dx.doi.org/10.1038/s41587-021-00842-6
转载本文请联系原作者获取授权,同时请注明本文来自小柯生命科学网博客。 链接地址: https://blog.sciencenet.cn/blog-3423233-1276309.html
上一篇:
《自然》子刊新突破:深度学习提升点扫描超分辨率成像 下一篇:
童为课题组发现治疗骨髓衰竭综合征的潜在靶标