||
文献来源:Ruheng Hua et al. Biomedicine & Pharmacotherapy,Volume 121, January 2020.(影响因子3.8)
摘要
目的
本研究的目的是阐明Syndecan-2(SDC2)基因在结直肠癌(CRC)发生发展过程中所起的作用,为该基因的临床应用奠定基础。
方法
通过qRT-PCR和蛋白质印迹分析评估SDC2的表达。为了了解SDC2基因潜在的生物学作用,我们还探讨了SDC2的表达水平与临床病理参数之间的相关性。通过使用MTT,板集落形成测定,Transwell侵袭测定和体外流式细胞术,研究了SDC2对结直肠癌细胞增殖,迁移,侵袭和凋亡的生物学影响。另外,还研究了相关的信号通路。
结果
在结直肠癌组织中,SDC2基因表达显著上调。SDC2的表达量与四个参数高度相关,即肿瘤分期(P <0.01),血管浸润(P = 0.0045),淋巴结转移(P = 0.0018)和远处转移(P = 0.0019)。抑制SDC2基因表达可以显著降低HCT116和SW480细胞的增殖,迁移和侵袭,并诱导细胞凋亡。此外,SDC2促进了结直肠癌细胞的上皮-间质转化(EMT),而p-MEK / MEK和p-ERK / ERK的比例在SDC2耗尽后明显降低。
结论
在结直肠癌的发展过程中,SDC2的过度表达起着致癌作用。基于SDC2的治疗方案有可能为结直肠癌的预防和治疗提供潜在的见解。
2。材料和方法
2.1患者和标本采集
从2013年到2016年,在南通大学附属医院普外科通过手术从患者身体切取了60例CRC组织和良性组织样本。同时收集邻近的健康组织作为阴性对照。要求所有患者填写术前临床表格。收集后,还要求患者以病理随访形式填写。
2.2道德声明
在开始本研究之前,该研究计划已获得南通大学附属医院伦理委员会的批准。此外,所有实验均严格遵守《赫尔辛基宣言》的原则。手术前,已从所有参与者处获得签署的书面知情同意书。
2.3 RNA分离和qRT-PCR
使用标准TRIzol试剂盒(Invitrogen,卡尔斯巴德,加利福尼亚州,美国)从CRC细胞中提取总RNA。确认RNA质量后,使用TransScript®一步gDNA去除法和cDNA 合成SuperMix(TranGene Biotech,中国)将2μg总RNA反转录为cDNA。随后,使用SYBR Green Master Mixture(罗氏,巴塞尔,瑞士)进行qRT-PCR,并在ABI7500实时PCR仪(美国马萨诸塞州沃尔瑟姆的Applied Biosystems)上进行PCR。为了估计SDC2的表达水平,使用Stepone软件和比较2-ΔΔCt方法进行数据分析。内部对照使用β-actin进行。使用的引物如下:SDC2正向:5'-AAACGGACAGAAGTCCTAGC-3'反向:5'-GATAAGCAGCACTGGATGGT-3'; β-actin:正向:5'-TCACCCA CACTGTGCCCATCTACGA-3',反向:5'-CAGCGGAACCGCTCATTGCCAATGG-3'。每组设置一式三孔进行PCR反应。
在提取蛋白质之前,将收集的组织匀浆,并制备总蛋白质裂解物。为了确定SDC2的核心蛋白,每1μg非去糖基化蛋白使用0.1-U肝素酶I和III(Sigma-Aldrich,美国密苏里州圣路易斯),0.1-U软骨素酶ABC(Sigma-Aldrich,美国密苏里州圣路易斯),0.1 U角质酶(日本上越市,Seikagaku)和0.001-U角质酶II(日本上越市,Seikagaku)在37℃对样品进行去糖基化处理4 h [30]。
随后,将裂解物溶解在裂解缓冲液(10%SDS-PAGE)中,并转移至聚偏二氟乙烯膜(MilliporeSigma,伯灵顿,马萨诸塞州,美国)。在含0.1%Tween-20(TBS-T)的Tris缓冲盐水中,用5%脱脂奶粉封闭膜30分钟。然后,将膜在TBS-T中洗涤4次,并在4℃下与一抗(SDC2(36-6200)(Invitrogen,Carlsbad,CA,USA),E-钙粘蛋白cadherin(ab1416),N-钙粘蛋白cadherin(ab18203)一起孵育过夜),波形蛋白vimentin(ab92547),Slug(ab180714),MEK(ab32091),p-MEK(ab96379)和β-actin蛋白(ab5694)(Abcam,Cambridge,UK),Twist(sc-81417),ERK1 / 2(sc -514302)和p-ERK(sc-7383)(美国加利福尼亚州圣克鲁斯),在4°C下孵育过夜并充分洗涤后,将膜与辣根过氧化物酶偶联的山羊多克隆抗兔IgG二抗孵育(1 :2000稀释)在25°C下放置1 h。用增强型化学发光(ECL)试剂盒(美国马萨诸塞州沃尔瑟姆市的皮尔斯生物技术公司)使用射线照相胶片对条带进行可视化。
2.5免疫组织化学分析与评估
对于免疫组织化学,首先将组织脱蜡并重新水化,然后在EDTA(pH 8.0)中加热。随后,抗原回收过程如下:柠檬酸盐缓冲液(10μmM)煮沸5分钟,然后与SDC2抗体(1:100)孵育2小时(室温)(目录号LS-C313032-100) (英国剑桥,Abcam),然后将组织与生物素标记的二抗一起孵育。经过苏木精染色(BASO,中国珠海)后,DAB溶液用于在载玻片上可视化。对于阳性染色的细胞,使用标准显微镜(日本东京的奥林巴斯公司(Olympus Corporation),放大倍数为200倍)计算染色强度。两名病理学家以双盲方式仔细评估了染色结果。为了评估染色,采用4级系统,如下:无染色强度(阴性)评分为0。如果存在可检测的染色强度,则将弱,中和强的强度分别记为1、2和3。根据阳性细胞的百分比,对于没有阳性细胞的染色,其染色等级为0,对于≤25%阳性染色,26–50%阳性染色,51–75%阳性染色和> 75%阳性的染色,其染色等级分别为1、2、3和4细胞。除了染色强度,我们还考虑了阳性细胞的百分比。通过结合这两个参数,将免疫组化结果分类为阴性低表达(<4)或中等强表达(≥4)。
2.6细胞培养
NCM460人结肠上皮细胞购自南通大学附属医院研究中心。细胞在RPMI-1640培养基(Gibco,NY,USA)中培养。该培养基中添加FBS(10%)、EGF(10 ng/mL)和胰岛素(1%)(第一生物和化学药物公司,中国上海);氢化可的松(5 μg/mL)和青霉素-链霉素(1%)(西格玛公司,美国密苏里州圣路易斯)。细胞在37℃和5%CO2的增湿环境中培养。
人结肠癌细胞(HCT116、SW480、HT29和SW620)来源于SUER生物技术公司(中国上海),DMEM培养基购自Sigma Alrich公司(美国密苏里州圣路易斯市),添加FBS(10%)和青霉素链霉素(1%)。
3、结果与分析
图1.在人类大肠癌的发展过程中,SDC2表达上调。 (A)在60例大肠癌(CRC)组织样本(肿瘤)和60例邻近正常组织样本(正常)中检测SDC2的mRNA表达,(B)在6对肿瘤/正常样本中确定SDC2的蛋白表达; (C)进行免疫组织化学分析以测量CRC组织样品和正常组织样品中SDC2的蛋白质水平。 放大倍率:200×; (D)具有两个SDC2表达水平的CRC患者的生存率的Kaplan–Meier生存分析。
表1. 60例CRC患者中SDC2表达与临床病理特征的关联分析。
案例数 | SDC2表达 | P值 | ||
特点 | 低(≤中) | 高(≥中) | ||
数量 | 60 | 30 | 30 | |
年龄(岁) | ||||
<60 | 24 | 13 | 11 | |
> 60 | 36 | 17 | 19 | |
性别 | ||||
女 | 32 | 17 | 15 | |
男 | 28 | 13 | 15 | |
位置 | ||||
结肠 | 29 | 18 | 11 | |
直肠 | 31 | 12 | 19 | |
肿瘤大小 | ||||
≤3厘米 | 8 | 5 | 3 | |
> 3厘米 | 52 | 25 | 27 | |
AJCC阶段 | ||||
I - II | 31 | 25 | 6 | |
III-IV | 29 | 5 | 24 | |
差异化 | ||||
好,中等 | 43 | 23 | 20 | |
较差的 | 17 | 7 | 10 | |
血管浸润 | ||||
是 | 29 | 9 | 20 | |
没有 | 31 | 21 | 10 | |
侵入深度 | ||||
T1 -T2 | 43 | 20 | 23 | |
T3-T4 | 17 | 10 | 7 | |
淋巴结转移 | ||||
N0 | 26 | 19 | 7 | |
N1-N2 | 34 | 11 | 23 | |
远处转移 | ||||
M0 | 32 | 22 | 10 | |
M1 | 28 | 8 | 20 |
双侧卡方检验。
图2。SDC2在大肠癌细胞系中的表达受到促进。(A)用qRT-PCR法检测人结肠上皮细胞(NCM460)和结直肠癌(CRC)细胞株(HCT116、SW480、HT29和SW620)中SDC2的mRNA水平;用Western blot法检测人结肠上皮细胞(NCM460)和CRC细胞株(HCT116、SW480、HT29和SW620)中SDC的蛋白水平用ImageJ分析(C,D)对HCT116和SW480细胞进行sh-SDC2转染处理(包括阴性对照,sh-NC)。采用qRT-PCR和Western blot分析,评价转染效率。数据以平均标准差表示。*与NCM460细胞株相比,P < 0.05,**P <0.01,**P <0.001。
图3。SDC2基因敲除抑制大肠癌细胞体外增殖。(A,B)细胞增殖用MTT法测定;C,D)细胞增殖用转染sh-SDC2或阴性对照的HCT116和SW480细胞集落形成法测定。数据以平均标准差表示。**与对照组相比,P < 0.01,***P < 0.001。
图4。SDC2基因敲除抑制大肠癌细胞的迁移和侵袭,促进细胞凋亡。(a、b)细胞迁移是由伤口愈合试验确定的;(c,d)细胞侵袭是由小室测定的;(e,f)细胞凋亡是用膜联蛋白V/PI染色的,在转染的细胞和转染的细胞中,细胞凋亡是由NC和SH染色的。数据以平均标准差表示。**P < 0.01,***P < 0.001。
图5。SDC2基因敲除通过调控上皮-间质转化(EMT)途径(A)抑制大肠癌(CRC)细胞的转移,通过MAPK途径(B)抑制大肠癌细胞的增殖。数据以三重态的平均标准差表示。*与sh-NC组比较,P < 0.05,**P <0.01**P <0.001。
图6。SDC2的上调通过上皮间质转化(EMT)和MAPK途径促进细胞增殖、迁移和侵袭,促进细胞凋亡。(a)通过MTT法和细胞集落形成法测定细胞增殖;(b)通过创伤愈合试验测定细胞迁移;(c)用TrnWistern法测定细胞侵袭;(d)用Annexin V/PI染色法测定细胞凋亡;SDC2激活转染NC或SDC2的SW480细胞中的EMT(E)和MAPK(F)途径。数据以平均标准差表示。*P < 0.05,**P < 0.01,**P <0.001。
四。讨论
SDC2是硫酸乙酰肝素蛋白多糖家族的成员,以共受体的方式参与多种细胞功能和微环境的形成[32]。最近,斑马鱼的基因敲除实验证实了SDC2在胚胎血管生成中的重要作用[23]。随着研究的进展,还发现SDC2的表达在一定程度上可以控制恶性肿瘤细胞的生长和转移[11,28,33]。这些作用提示SDC2可能通过细胞信号传导、粘附侵袭和血管生成参与肿瘤的形成。然而,SDC2在CRC中的潜在作用仍不清楚,其相关机制尚不清楚。作者假设SDC2与CRC的发生、发展有关,旨在阐明SDC2在CRC中的作用。
在本研究中,作者观察到与癌旁组织相比,SDC2在大肠癌组织中显著上调,并且这种过度表达表明与大肠癌患者的不良预后有直接关系。卡方检验显示SDC2在患者中的表达具有明显的临床病理意义,且SDC2的高表达与肿瘤分期(P<0.01)、血管侵犯(P<0.0045)、淋巴结转移(P<0.0018)、远处转移(P<0.0019)呈正相关。在本研究中使用的四种CRC细胞系中,SDC2呈上调趋势。四种细胞系之间存在差异。HCT116细胞具有比HT29细胞更强的侵袭力[34],在HCT116细胞中发现了更高的SDC2水平。此外,SW620细胞是SW480细胞(原发性结肠癌细胞)的淋巴结转移衍生物,SDC2表达较少,与临床资料相矛盾。推测肿瘤微环境等因素是导致体内外淋巴结转移和SDC2表达差异的原因。
随后,作者研究了下调SDC2的反应。数据表明,SDC2可能是CRC的一个致癌基因,因为SDC2的敲除明显损害了细胞的增殖、迁移和侵袭能力。有趣的是,大肠癌的下调在体外促进了细胞凋亡,从而提示SDC2可能在大肠癌的进展中起到促进肿瘤的作用。
近年来,已有研究表明MAPK和EMT信号通路与肿瘤的侵袭转移密切相关[35,36]。EMT是上皮细胞与周围间质细胞相互作用过程中某些间质细胞获得特征的现象[37]。多种细胞外信号分子级联的结果,这些分子在EMT上激活下游蛋白质。SDC2对EMT相关标记E-cadherin的作用也进行了研究[38,39]。MAPK是一种通过细胞外信号引起核反应的常见途径。MAPK和EMT信号通路的作用主要调节肿瘤细胞的生长、增殖和凋亡[40,41]。在此,作者还评估了SDC2表达对MAPK和EMT信号通路的影响。结果表明,SDC2的过度表达显著促进了MAPK和EMT途径的表达,进一步促进了肿瘤细胞的增殖和发育。SDC2的胞质结构域通过PKCγ调控FAK/ERK信号通路提高MMP-7水平[42,43]。FAK是MAPK途径的激活剂,目前研究的重点是基质金属蛋白酶,而在本研究中,作者考虑了足够的EMT标记和MAPK信号相关的增殖和凋亡。
进一步的研究对于理解和描述SDC2的潜在分子机制至关重要,包括体内肿瘤发生相关的靶基因、转录因子或下游基因。本文研究了SDC2在大肠癌中的潜在作用,提供了SDC2在大肠癌中致癌作用的见解。然而,有必要进行更多的实验来揭示SDC2在大肠癌发生和发展中的调控机制。SDC2的糖基化部分在与其他功能蛋白的特异性相互作用中起着关键作用[44],SDC2的糖基化模式是否对大肠癌的发生发展有影响有待进一步探讨。综上所述,SDC2是一个潜在的诊断和预后标志物,因此可以作为CRC的一个新的治疗靶点。
References
1.R.L. Siegel, K.D. Miller, S.A. Fedewa, D.J. Ahnen, R.G. Meester, A. Barzi, A. JemalColorectal cancer statistics, 2017
CA Cancer J. Clin., 67 (2017), pp. 177-193
CrossRefView Record in ScopusGoogle Scholar
2.M. Arnold, M.S. Sierra, M. Laversanne, I. Soerjomataram, A. Jemal, F. BrayGlobal patterns and trends in colorectal cancer incidence and mortality
Gut, 66 (2017), pp. 683-691
CrossRefView Record in ScopusGoogle Scholar
3.M. Sudo, S. Furuya, H. Shimizu, Y. Nakata, H. Iino, K. Shiraishi, H. Akaike, N.Hosomura, Y. Kawaguchi, H. Amemiya, H. Kawaida, S. Inoue, H. Kono, D. IchikawaLong-term outcomes after surgical resection in patients with stage IV colorectal cancer: a retrospective study of 129 patients at a single institution
World J. Surg. Oncol., 17 (2019), p. 56
4.Y.C. Shao, Y.Y. Chang, J.K. Lin, C.C. Lin, H.S. Wang, S.H. Yang, J.K. Jiang, Y.T. Lan, T.C.Lin, A.F. Li, W.S. Chen, S.C. ChangNeoadjuvant chemotherapy can improve outcome of colorectal cancer patients with unresectable metastasis
Int. J. Colorectal Dis., 28 (2013), pp. 1359-1365
CrossRefView Record in ScopusGoogle Scholar
5.J. Yu, Q. Feng, S.H. Wong, D. Zhang, Q. yi Liang, Y. Qin, L. Tang, H. Zhao, J. Stenvang, Y. LiMetagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer Gut, 66 (2017), pp. 70-78
CrossRefView Record in ScopusGoogle Scholar
6.R.M. McQuade, V. Stojanovska, J.C. Bornstein, K. NurgaliColorectal cancer chemotherapy: the evolution of treatment and new approaches
Curr. Med. Chem., 24 (2017), pp. 1537-1557
View Record in ScopusGoogle Scholar
7.Z. Miao, X. Deng, P. Shuai, J. ZengUpregulation of SOX18 in colorectal cancer cells promotes proliferation and correlates with colorectal cancer risk
Onco Targets Ther., 11 (2018), p. 8481
CrossRefView Record in ScopusGoogle Scholar
8.Y. Zhen, Y. Ye, H. Wang, Z. Xia, B. Wang, W. Yi, X. DengKnockdown of SNHG8 repressed the growth, migration, and invasion of colorectal cancer cells by directly sponging with miR-663
Biomed. Pharmacother., 116 (2019), Article 109000
ArticleDownload PDFGoogle Scholar
9.E. Chen, Q. Li, H. Wang, F. Yang, L. Min, J. YangMiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study
Biomed. Pharmacother., 106 (2018), pp. 1370-1377
ArticleDownload PDFView Record in ScopusGoogle Scholar
10.N. Shirafkan, B. Mansoori, A. Mohammadi, N. Shomali, M. Ghasbi, B. BaradaranMicroRNAs as novel biomarkers for colorectal cancer: new outlooks
Biomed. Pharmacother., 97 (2018), pp. 1319-1330
ArticleDownload PDFView Record in ScopusGoogle Scholar
11.M. Mytilinaiou, D. Nikitovic, A. Berdiaki, A. Kostouras, A. Papoutsidakis, A.M.Tsatsakis, G.N. TzanakakisEmerging roles of syndecan 2 in epithelial and mesenchymal cancer progression
IUBMB life, 69 (2017), pp. 824-833
CrossRefView Record in ScopusGoogle Scholar
12.C.M. Vicente, R. Ricci, H.B. Nader, L. TomaSyndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts
BMC Cell Biol., 14 (2013), p. 25
13.G. David, X.M. Bai, B. Van der Schueren, P. Marynen, J.-J. Cassiman, H. Van den BergheSpatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development
Development, 119 (1993), pp. 841-854
View Record in ScopusGoogle Scholar
14.T. Letoha, A. Hudak, E. Kusz, A. Pettko-Szandtner, I. Domonkos, K. Josvay, M.Hofmann-Apitius, L. SzilakContribution of syndecans to cellular internalization and fibrillation of amyloid-beta(1-42)
Sci. Rep., 9 (2019), p. 1393
15.Y. Halden, R. Angelika, W. Atzenhofer, L. Szilak, A. Wabnig, J. AndreasInterleukin-8 binds to syndecan-2 on human endothelial cells
Biochem. J., 377 (2004), pp. 533-538
View Record in ScopusGoogle Scholar
16.S. Clasper, S. Vekemans, M. Fiore, M. Plebanski, P. Wordsworth, G. David, D.G. JacksonInducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibroglycan) on human activated macrophages can regulate fibroblast growth factor action
J. Biol. Chem., 274 (1999), pp. 24113-24123
View Record in ScopusGoogle Scholar
17.X. Xian, S. Gopal, J.R. CouchmanSyndecans as receptors and organizers of the extracellular matrix
Cell Tissue Res., 339 (2010), pp. 31-46
CrossRefView Record in ScopusGoogle Scholar
18.S. Choi, Y. Kim, H. Park, I.O. Han, E. Chung, S.Y. Lee, Y.B. Kim, J.W. Lee, E.S. Oh, J.Y. YiSyndecan-2 overexpression regulates adhesion and migration through cooperation with integrin alpha2
Biochem. Biophys. Res. Commun., 384 (2009), pp. 231-235
ArticleDownload PDFView Record in ScopusGoogle Scholar
19.L. Chen, C. Klass, A. WoodsSyndecan-2 regulates transforming growth factor-beta signaling
J. Biol. Chem., 279 (2004), pp. 15715-15718
View Record in ScopusGoogle Scholar
20.Z. Wang, D. Telci, M. GriffinImportance of syndecan-4 and syndecan -2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase-fibronectin complex
Exp. Cell. Res., 317 (2011), pp. 367-381
ArticleDownload PDFView Record in ScopusGoogle Scholar
21.G. DeRossi, A.R. Evans, E. Kay, A. Woodfin, T.R. McKay, S. Nourshargh, J.R. Whiteford Shed syndecan-2 inhibits angiogenesis
J. Cell Sci., 127 (2014), pp. 4788-4799
22.E. Chen, S. Hermanson, S.C. EkkerSyndecan-2 is essential for angiogenic sprouting during zebrafish development
Blood, 103 (2004), pp. 1710-1719
View Record in ScopusGoogle Scholar
23.C.B. Arrington, H.J. YostExtra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo
Development, 136 (2009), pp. 3143-3152
CrossRefView Record in ScopusGoogle Scholar
24.M.J. Kwon, E. Hong, Y. Choi, D.H. Kang, E.S. OhInterleukin-1alpha promotes extracellular shedding of syndecan-2 via induction of matrix metalloproteinase-7 expression
Biochem. Biophys. Res. Commun., 446 (2014), pp. 487-492
ArticleDownload PDFView Record in ScopusGoogle Scholar
25.O. Kousidou, A. Berdiaki, D. Kletsas, A. Zafiropoulos, A.D. Theocharis, G.N. Tzanakakis, N.K. KaramanosEstradiol-estrogen receptor: a key interplay of the expression of syndecan-2 and metalloproteinase-9 in breast cancer cells
Mol. Oncol., 2 (2008), pp. 223-232
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
26.A. Popovic, A. Demirovic, B. Spajic, G. Stimac, B. Kruslin, D. TomasExpression and prognostic role of syndecan-2 in prostate cancer
Prostate Cancer Prost. Dis., 13 (2010), pp. 78-82
27.H. Jung, H. Chung, S.E. Chang, S. Choi, I.O. Han, D.H. Kang, E.S. OhSyndecan-2 regulates melanin synthesis via protein kinase C betaII-mediated tyrosinase activation
Pigment Cell Melanoma Res., 27 (2014), pp. 387-397
CrossRefView Record in ScopusGoogle Scholar
28.J. Wang, C. Lu, J. Chen, X. Chen, S. Wang, X. Lu, X. TangExpression of Syndecan-2 in gastric adenocarcinoma and its effect on tumorigenesis in vitro
Transl. Cancer Res., 6 (2017), pp. 658-666
CrossRefView Record in ScopusGoogle Scholar
29.S. Choi, Y. Choi, E. Jun, I.-S. Kim, S.-E. Kim, S.-A. Jung, E.-S. OhShed syndecan-2 enhances tumorigenic activities of colon cancer cells
Oncotarget, 6 (2015), p. 3874
CrossRefView Record in ScopusGoogle Scholar
30.C.B. Little, C.E. Hughes, C.L. Curtis, M.J. Janusz, R. Bohne, S. Wang-Weigand, Y.O.Taiwo, P.G. Mitchell, I.G. Otterness, C.R. FlanneryMatrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation
Matrix Biol., 21 (2002), pp. 271-288
ArticleDownload PDFView Record in ScopusGoogle Scholar
31.U.A. Germann, B.F. Furey, W. Markland, R.R. Hoover, A.M. Aronov, J.J. Roix, M. Hale, D.M. Boucher, D.A. Sorrell, G. Martinez-BotellaTargeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib)
Mol. Cancer Ther., 16 (2017), p. 2351
CrossRefView Record in ScopusGoogle Scholar
32.N.A. Afratis, D. Nikitovic, H.A. Multhaupt, A.D. Theocharis, J.R. Couchman, N.K.KaramanosSyndecans–key regulators of cell signaling and biological functions
FEBS J., 284 (2017), pp. 27-41
CrossRefView Record in ScopusGoogle Scholar
33.M. Sun, S. Gomes, P. Chen, C.A. Frankenberger, D. Sankarasharma, C.H. Chung, K.K.Chada, M.R. RosnerRKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2
Oncogene, 33 (2014), p. 3528
CrossRefView Record in ScopusGoogle Scholar
34.K. Yao, J. Gietema, S. Shida, M. Selvakumaran, X. Fonrose, N. Haas, J. Testa, P. O’DwyerIn vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo
Br. J. Cancer, 93 (2005), p. 1356
CrossRefView Record in ScopusGoogle Scholar
35.M.L. Slattery, L.E. Mullany, L.C. Sakoda, R.K. Wolff, W.S. Samowitz, J.S. HerrickThe MAPK-signaling pathway in colorectal cancer: dysregulated genes and their association with microRNAs
Cancer Inform., 17 (2018)
1176935118766522
36.F.M. Davis, T.A. Stewart, E.W. Thompson, G.R. MonteithTargeting EMT in cancer: opportunities for pharmacological intervention
Trends Pharmacol. Sci., 35 (2014), pp. 479-488
ArticleDownload PDFView Record in ScopusGoogle Scholar
37.T. Brabletz, R. Kalluri, M.A. Nieto, R.A. WeinbergEMT in cancer
Nat. Rev. Cancer, 18 (2018), p. 128
CrossRefView Record in ScopusGoogle Scholar
38.B. Jang, H. Jung, H. Chung, B.-I. Moon, E.-S. OhSyndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells
Biochem. Biophys. Res. Commun., 477 (2016), pp. 47-53
ArticleDownload PDFView Record in ScopusGoogle Scholar
39N. Christou, A. Perraud, S. Blondy, M.O. Jauberteau, S. Battu, M. MathonnetE‑cadherin: a potential biomarker of colorectal cancer prognosis
Oncol. Lett., 13 (2017), pp. 4571-4576
CrossRefView Record in ScopusGoogle Scholar
40.T. Yagi, E. Kubota, H. Koyama, T. Tanaka, H. Kataoka, K. Imaeda, T. JohGlucagon promotes colon cancer cell growth via regulating AMPK and MAPK pathways
Oncotarget, 9 (2018), pp. 10650-10664
View Record in ScopusGoogle Scholar
41.Y. Takeyama, M. Sato, M. Horio, T. Hase, K. Yoshida, T. Yokoyama, H. Nakashima, N.Hashimoto, Y. Sekido, A.F. GazdarKnockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells
Cancer Lett., 296 (2010), pp. 216-224
ArticleDownload PDFView Record in ScopusGoogle Scholar
42.H.-Y. Ryu, J. Lee, S. Yang, H. Park, S. Choi, K.-C. Jung, S.-T. Lee, J.-K. Seong, I.-O. Han, E.-S. OhSyndecan-2 functions as a docking receptor for pro-matrix metalloproteinase-7 in human colon cancer cells
J. Biol. Chem., 284 (2009), pp. 35692-35701
CrossRefView Record in ScopusGoogle Scholar
43.B. Jang, H. Jung, S. Choi, Y.H. Lee, S.-T. Lee, E.-S. OhSyndecan-2 cytoplasmic domain up-regulates matrix metalloproteinase-7 expression via the protein kinase Cγ–mediated FAK/ERK signaling pathway in colon cancer
J. Biol. Chem., 292 (2017), pp. 16321-16332
CrossRefView Record in ScopusGoogle Scholar
44.A. Denys, F. Allain The emerging roles of heparan sulfate 3-O-sulfotransferases in cancer
Front. Oncol., 9 (2019), p. 507
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-17 13:44
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社