近年来,化石燃料的大量消耗引发了环境污染和能源危机。因此,开发可再生能源(如氢能)备受关注。其中,由阴极氢进化反应(HER)和阳极氧进化反应(OER)组成的电化学水裂解代表了一种理想的商业化技术。尽管Pt基和Ir/Ru基材料被认为是最先进的HER和OER的电催化剂,但高成本和稀缺性阻碍了其大规模应用。因此,研究人员迫切需要通过使用非贵金属材料来设计高效的水分解电催化剂。 Interface Engineering of NiₓSᵧ@MnOₓHᵧ Nanorods to Efciently Enhance Overall‑Water‑Splitting Activity and Stability
此外,MnOₓHᵧ作为有效的保护壳,很好地阻止了电催化剂在高电流密度下的电化学腐蚀,增强了高电位下的工作稳定性。构建的三维纳米棒结构不仅暴露了丰富的活性位点,还加速了电解质的扩散和气泡的脱附。因此,NiₓSᵧ@MnOₓHᵧ/NF在整体水分解方面表现出特殊的双功能活性和稳定性。在100和500 mA cm⁻2时,OER的过电位分别仅为326和356 mV,同时在100 mA cm⁻2时可以维持150 h的高稳定性。在整体水分解能力方面,它在10 mA cm⁻2时表现出1.529 V的低电池电压,同时在100 mA cm⁻2下可以维持100小时。
最后,作者研究了所制备异质结纳米棒电催化剂的催化活性。如图5所示,作者用标准的电极配置在1.0M KOH电解液中研究了电催化剂的OER性能。为了进行比较,首先在相同条件下测试了NiₓSᵧ/NF、MnOₓHᵧ/NF和RuO₂/NF的LSV曲线(图5a)。NiₓSᵧ@MnOₓHᵧ/NF的OER活性在低电流密度范围内与贵金属RuO₂/NF相似,但在高电流密度范围内高于RuO₂/NF,证明了NiₓSᵧ@MnOₓHᵧ/NF拥有出色的OER活性。此外,它还呈现出比NiₓSᵧ/NF和MnOₓHᵧ/NF高的电流密度,表明NiₓSᵧ和MnOₓHᵧ之间的协同效应使NiₓSᵧ@MnOₓHᵧ/NF具有增强的OER活性。图5b比较了不同的高电流密度下制备的电催化剂的OER活性。NiₓSᵧ@MnOₓHᵧ/NF可以在326、347和356 mV的低过电位下分别产生100、300和500 mA cm⁻2的电流密度,而NiₓSᵧ/NF 和MnOₓHᵧ/NF则需要381和345 mV的过电位才能达到 达到100 mA cm⁻2。
NiₓSᵧ@MnOₓHᵧ/NF展现了优秀的OER和HER性能,作为一种双功能电催化剂,被应用于电化学全解水系统的阳极和阴极(图7a)。如图7b所示,NiₓSᵧ@MnOₓHᵧ/NF在10 mA cm⁻2的情况下,以1.530 V的低电池电压实现了全解水的良好活性。此外,它只需要1.829和1.888 V的电池电压就可以达到100和200 mA cm⁻2的电流密度。计时电流曲线也表明催化剂在电池电压为1.83v和200 h工作时间内具有良好的稳定性,有望用于工业化全解水。
加拿大国立科学研究院(INRS)能源材料与通讯所教授,加拿大皇家科学院青年院士,世界青年科学院Fellow,国际知名的纳米技术和可持续能源研究人员。为开发新一代燃料电池、氢能和电池技术做出了重大贡献,旨在以经济高效的方式解决能源短缺和环境挑战。获得多项奖项和荣誉,包括加拿大皇家学会学院成员、国际氢能研究协会奖和ECS丰田奖学金等,担任国际电化学能源科学院(International Academy of Electrochetical Energy Science)副院长,以及十余种科学期刊的编辑和编委会成员。