Superionic Conductivity in Ceria-Based Heterostructure Composites for Low-Temperature Solid Oxide Fuel CellsYifei Zhang, Jingjing Liu, Manish Singh, Enyi Hu, Zheng Jiang, RizwanRaza*, Faze Wang, Jun Wang, Fan Yang*, Bin Zhu*Nano‑Micro Lett.(2020)12:178https://doi.org/10.1007/s40820-020-00518-x
1. 用于新型半导体离子燃料电池的二氧化铈的异质结构复合材料。2. 界面离子快速输运与能带结构的交叉有关。
3. 能带对准/弯曲产生的内置场在超离子传导中起重要作用。
在能源危机和环境污染两大世界难题面前,开发新型可持续的环保能源显得尤为重要。固体氧化物燃料电池(SOFC)能够提供高出锂离子电池、太阳能电池数倍的能量转化效率,它依靠全固态结构在高温下将燃料气转化为电能,且绿色无污染,在近年来受到科研工作者的密切关注。基于二氧化铈的异质结构复合材料(CHC)已成为开发高级低温(300–600°C)固体氧化物燃料电池(LTSOFC)的新动力,该电池在1000 mW cm⁻2的功率下具有出色的功率输出。二氧化铈-碳酸盐或二氧化铈-半导体异质结构复合材料已使CHC系统为LTSOFC的基础和应用科学研究做出了重要贡献。但是,仍然缺乏对获得优异燃料电池性能和高超离子传导性的深刻科学理解,这可能会阻碍其广泛应用和商业化。东南大学能源与环境朱斌教授以及杨帆副研究员等详细总结了基于二氧化铈的异质结构复合材料低温固体氧化物燃料电池研究最新进展和策略。本综述目的是为二氧化铈的异质结构复合材料和相关固体氧化物燃料电池的超离子传导建立新的基本策略。这涉及能带和内置场辅助超离子传导,突出了离子转移,能带结构和取向影响之间的耦合效应。此外,讨论并介绍了功能性CHC材料的二氧化铈碳酸盐理论,例如空间电荷和多离子传导,以及新的科学认识。I 不同种类的燃料电池相较于传统的三成分型燃料电池SOFC中,SCFC结合了电极和电解质成均匀的结构,而无需使用电解质分隔体和三部件结构。
图1. 不同种类的燃料电池示意图。
SCFC的发展为CHC的研究和开发提供了新的维度。从微观层面了解CHC的内部传导非常重要。通过引入能带排列和超离子传导原理作为高级能源应用中CHC材料的通用科学基础,它的目的还在于提供一种新的方法和策略。
II 界面超离子传导
在核和壳之间,界面区域在离子迁移率和电导率中起着至关重要的作用。各种离子通过界面传递,形成“高电导率路径” 。
图2. 二氧化铈的异质结构复合材料的核壳结构的示意图。
空间电荷区在理解界面超离子电导率理论中起着至关重要的作用。 应变的影响是增强CHC系统中离子传导性的另一个关键因素。特别是,基于在CHC系统中获得优异的性能,考虑了三种应变效应,包括促进离子迁移,形成氧空位。图3. 不同界面结构的晶格失配的顺序:相干界面,半相干界面和不相干界面。d. 外在物种:质子(H⁺)传导。H⁺传输在二氧化铈碳酸盐CHC的离子传导中起着重要作用,并且比O2⁻离子在CHC中的贡献更大。图4. 铈-碳酸盐异质结构复合物的过氧化物(O₂2⁻)离子传导机理。能带结构影响电子-空穴的分离和相关的电子电导率,改进的能带结构有助于改善燃料电池的性能。半导体异质结对整体CHC特性和燃料电池性能具有重大影响。
图5. (a)钙钛矿电池能级图(b)由钙钛矿太阳能电池结构启发燃料-电转换装置。图6. 大型p–n异质结SIFC器件的能带结构和对准。内置场可以促进离子迁移,并具有显着增强的电导率。内置场促进离子电导率具有三个方面:(1)降低活化能以促进离子迁移;(2)增加流动离子浓度;(3)直接驱动并协助离子的运输。引入相结的概念来解释二氧化铈-碳酸盐CHC系统的传导机理。与传统的p-n异质结相比,新型相结无需两个或更多半导体即可实现空穴-电子对分离。因此,可以合理地得出结论,异质结形成中最重要的影响不是不同类型的半导体,而是能带对准的实现。图8. 掺有各种金属碳酸盐材料的ZnO波纹层的能级。二氧化铈-碳酸盐CHC系统有两种相连接的情况。在这里,纯二氧化铈相称为A相,碳酸盐结合相称为B相。碳酸盐混入会降低B相的能带结构,从而导致A相与B相之间的能带排列。图9. (a)氧化铈-碳酸盐CHC系统相结形成示意图;(b)二氧化铈-碳酸盐CHC系统中的能带对准和内置场。相结是提高氧化铈-碳酸盐CHC系统电导率的合理机制。类似于p–n结,相结有助于促进电子-空穴对的分离。同时,适当的能带排列和相应的BIF有助于阻止电子迁移并促进离子迁移。因此,碳酸铈-碳酸盐CHC具有出色的离子电导率和性能。本综述总结了CHC的界面效应和多离子传导机理。重点介绍了能带理论,并强调了CHC系统中各组成相之间的能带对准和BIF的重要性,以加深对CHC中超离子传导的理解并提出新的科学原理。可以通过能带理论设计“高传输途径”,并且可以通过在CHC系统中构建异质结构来实现。与常规界面机械解释相比,能带对准和BIF可能提供另一种描述超离子传导的方法。能带理论和BIF提供了一种非常不同的方法来研究和深入了解内部机制,它可以是设计材料功能和理解材料特性的更广泛方法。此外,可以预见的是,将EB理论与CHC系统结合起来将加快研发速度,并扩展新一代燃料电池的应用范围。朱斌
本文通讯作者
东南大学 教授
先进燃料电池和固体电池:主要包括半导体离子燃料电池,异质复合材料界面离子快速输运,内建电场(BIEF)激发超离子导电/体。
▍主要研究成果
瑞典皇家工学院任教授级高级研究员,主持瑞典国家国际合作基金委(STINT Fellow),瑞典国家创新局,瑞典国家能源局,瑞典国家研究理事会和欧盟先进材料和燃料电池以及欧盟-中国研究网络(www.nanocofc.com)。多次在瑞典国家组织的国际专家评审评为国际领先的研究地位。连续5年进入中国高被引学者榜单(Elsevier能源类)。在材料和能源等国际顶级期刊发表论文300多篇,引用8100多次,H因子47, 引领国际燃料电池研究发展的新方向。创立了半导体离子材料和半导体离子学以及在新一代能源技术的应用:发明了单部件无电解质燃料电池,半导体离子燃料电池。近五年以第一作者或通讯作者发表SCI论文60多篇。影响因子大于10的T1论文8篇(自然子刊2篇)。▍Email: zhu-bin@seu.edu.cn
▍个人主页
power.seu.edu.cn/zb_28142/list.htmNano-Micro Letters《纳微快报》是上海交通大学主办、Springer Nature合作开放获取(open-access)出版的英文学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, commentary, perspective, letter, highlight, news, etc),包括微纳米材料的合成表征与性能及其在能源、催化、环境、传感、吸波、生物医学等领域的应用研究。已被SCI、EI、SCOPUS、DOAJ、CNKI、CSCD、知网、万方、维普等数据库收录。2019 JCR影响因子:12.264。在物理、材料、纳米三个领域均居Q1区(前15%)。2019 CiteScore:12.9,材料学科领域排名第4 (4/120)。中科院期刊分区:材料科学1区TOP期刊。全文免费下载阅读(http://springer.com/40820),欢迎关注和投稿。
E-mail:editor@nmletters.org
Tel:021-34207624
https://blog.sciencenet.cn/blog-3411509-1267817.html
上一篇:
曲久辉院士:阵列式磷化钴电催化剂实现低能耗水分解下一篇:
西班牙王德义教授综述:新型阻燃聚合材料MOF及其衍生物