《纳微快报》Nano-Micro Letters分享 http://blog.sciencenet.cn/u/nanomicrolett

博文

综述:细胞膜仿生—纳米生物医药新技术

已有 15388 次阅读 2019-12-16 13:28 |系统分类:论文交流| 免疫调节, 纳米粒, 细胞膜, 肿瘤治疗, 药物递送

Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications

Yao Liu, Jingshan Luo, Xiaojia Chen, Wei Liu*, Tongkai Chen*

Nano-Micro Lett.(2019)11:100

https://doi.org/10.1007/s40820-019-0330-9

本文亮点

1 本文综述了近年来细胞膜包裹纳米粒在药物递送、肿瘤治疗、血管疾病、免疫调节、解毒等方面的应用进展。
2 本文收集了近十年来与该技术相关的专利申请,全面讨论了该技术未来的挑战和发展趋势。
3 细胞膜包裹纳米粒的独特性质使其成为生物医学应用中一种有非常有发展前途的策略,并将为人类健康做出突出贡献。
内容简介
广州中医药大学陈桐楷课题组和武汉大学刘威课题组合作,对近十年来细胞膜仿生技术的研究进展进行了全面的总结和讨论。硕士研究生刘瑶为论文的第一作者。

细胞膜仿生技术是一种仿生复制细胞膜特性的方法,将天然细胞膜特性与人工内芯材料的特性结合起来,从而大大提高生物相容性,同时在体内实现长效循环和靶向递送。尽管细胞膜包裹的纳米粒具有明显的优势,但在其应用于临床之前还有很多工作要探索。

在这篇综述中,作者首先对细胞膜仿生技术的理论进行了全面概述,总结了现有的制备和表征技术。接下来,重点介绍了各种细胞膜类型的功能和应用。此外,作者整理了用于细胞膜仿生技术的模型药物,并回顾了过去十年来与该技术相关的专利申请。最后,作者对这项技术的未来挑战和趋势进行了展望,以期对细胞膜仿生技术的未来发展提供一个全面的概述。

研究背景

纳米粒子已经在疾病的诊断和治疗领域得到了广泛的研究,在药物递送、光热疗法、诊断成像和光动力疗法等方面具有潜在的应用空间。目前,聚乙二醇被广泛用作修饰纳米粒表面的金标准方法,用于逃避网状内皮系统的清除。然而,最近的研究表明,经聚乙二醇修饰的纳米药物,在持续给药后被肝脏迅速清除,这种现象被称为“加速血液清除”。因此,大量研究工作致力于研发更适合体内药物递送的仿生纳米系统。其中,纳米粒生物功能化最突出的技术就是细胞膜仿生技术。细胞膜仿生技术是一种简单的自上而下的方法,利用细胞膜作为载体,在不考虑内核纳米材料特性的情况下,促进核内纳米粒在体内的长循环和靶向递送。

图文导读
I 细胞膜仿生技术的理论基础

细胞膜包裹的纳米粒融合了原细胞和内核纳米粒的优点。这种细胞膜仿生技术的起源可以追溯到2011年,张良方课题组首次报道了这项技术,他的团队采取自上而下的策略,利用完整的细胞膜包裹纳米粒。与合成的“隐形”颗粒相比,被红细胞膜包裹的纳米颗粒在小鼠体内的半衰期更长,在循环中的滞留时间长达72小时。所制备的纳米颗粒既具有纳米载体本身的理化性质,又具有天然细胞的生物学性质。细胞膜实现免疫逃避不是通过躲避来完成的,而是穿上敌人的军装,膜蛋白相当于它们的通行证,使得它们能在体内大方自由地运送。常规的细胞膜包裹纳米粒的制备可分为三个关键步骤:膜提取、内核纳米载体的制备和融合(图1),每一个步骤都是纳米粒功能化的关键。

图1 通过物理共挤出方法进行细胞膜包裹。通过低渗处理、反复冻融或超声波破坏获得合适的细胞膜后,与合成的纳米粒通过多孔聚碳酸酯膜共挤压。
制备后,需要对细胞膜包裹纳米粒的表征包括对其理化和生物学特性的表征,以确认细胞膜已成功地涂覆在纳米粒表面。细胞膜包裹的成功与否取决于纳米粒的大小、表面电荷和蛋白质组成(图2)。

图1 细胞膜包裹纳米粒的表征。(a)显示核-壳的结构TEM图像。(b) 血小板膜衍生载体包裹硅颗粒的扫描电镜图像。(c) 平均粒径大小和Zeta电位。(d)通过Western Blotting 验证的特征性膜蛋白的保留。(e)SDS-PAGE蛋白分析。
II 细胞膜仿生技术应用于药物递送
红细胞膜是生物源性的,在某些情况下,它们有可能取代聚乙二醇并克服药物自身的限制。目前,大量的研究集中在红细胞膜包裹的纳米粒上,并定期开发出越来越智能的纳米粒子。与红细胞相比,血小板更适合于靶向损伤组织和肿瘤部位。血小板膜包裹的纳米粒具有持久的体内循环和靶向性,是一种理想的给药途径。因此,这种方法为血管疾病的治疗提供了新的机会,包括心瓣再狭窄(图3)和动脉粥样硬化。鉴于白细胞有许多不同的亚型,白细胞包裹的纳米粒可用于一系列不同的靶向药物传递应用,而无需进行重大修饰。癌细胞膜可以实现同源肿瘤靶向性的手段,可以有效地靶向体内的肿瘤。


图2 利用血小板膜包裹纳米粒实现靶向递送多西紫杉醇治疗心瓣再狭窄。
III 细胞膜仿生技术应用于肿瘤治疗

光治疗是主动肿瘤治疗研究的一个主要领域,红细胞膜长循环特性在这一背景下具有很大的价值。血小板的粘附特性为克服光敏剂和光热转换材料在光治疗中分布不均的局限性提供了解决方法。光热治疗依赖于热损伤诱导癌细胞死亡,而这种损伤后的反馈可以促进血小板的被动靶向性,导致其额外的募集和光热效应的增强。白细胞包裹的纳米粒被证明是非常适合光治疗的理想粒子,可提高体内活性光敏剂/光热化合物的生物相容性和靶向性。已经开发出的几种用于光治疗的癌细胞膜包裹纳米粒子能够有效地靶向同源肿瘤,以传递光敏剂/光热化合物,并且与化疗或肿瘤饥饿策略相结合,能够达到显著的抗肿瘤效果(图4)。

图3 癌细胞膜包裹的纳米粒在光动力治疗中的抗肿瘤效果。
IV 细胞膜仿生技术应用于免疫调节

中性粒细胞作为外周血中最丰富的白细胞,对炎症信号有天然趋化的作用,在化疗或放疗中起着关键作用。癌细胞膜提供了一系列肿瘤相关抗原,以刺激肿瘤特异性免疫应答。研究表明,将疫苗佐剂包在癌细胞膜中是一种有效的提高抗癌免疫的方法,为肿瘤免疫治疗提供了巨大的空间。

图4 中性粒细胞膜包裹的载药纳米粒改善关节炎小鼠模型的关节破坏。
V 细胞膜仿生技术应用于解毒

某些外毒素和内毒素化合物能够结合特定的细胞表面分子,这种性质可以被用于解毒。细胞膜包覆的纳米粒在体内作为毒素诱饵,吸收破坏毒素,减少毒素对正常细胞的侵袭。目前,细胞膜包裹的纳米粒已被应用于中和特定细菌毒素的新策略。

VI 展望

天然细胞膜的独特性质,包括其延长循环时间、免疫逃逸、粘附和同源靶向性的能力,为细胞膜仿生技术在纳米医学领域的新应用打开了大门。该技术中使用的细胞膜类型包括红细胞膜、血小板膜、白细胞膜、癌细胞膜、干细胞膜、β细胞膜、成纤维细胞膜及其杂化膜。这些细胞膜包裹的纳米粒已被证明可以实现有效的药物递送、肿瘤治疗、免疫调节和解毒。杂化细胞膜的出现使得各种细胞膜类型的特性得以融合,这种策略在过去两年中得到了广泛的应用。然而,目前与细胞膜仿生技术相关的研究还存在局限性。为了开发多功能智能细胞膜包裹纳米粒,不可避免地需要对膜进行某些修饰,同时可能会产生一定的副作用。过量使用免疫细胞膜包裹的纳米粒可能通过与免疫系统的相互作用诱发或加重炎症,从而可能导致病理介质的释放。虽然细胞膜仿生技术尚未实现全面的临床实施,但其明显的优势和丰富的细胞膜来源为其工业化生产提供了坚实的基础。作者相信,在不久的将来,细胞膜包裹纳米粒的研究和开发将为人类健康做出不可估量的贡献。

作者简介

陈桐楷

(本文通讯作者)

广州中医药大学 副教授,硕士生导师

主要研究领域
纳米药物治疗肿瘤和脑部疾病

主要研究成果

近年来,已在Advanced DrugDelivery Reviews, Journal of Controlled Release, ACS Applied Materials &Interfaces, Molecular Pharmaceutics等国际权威期刊上发表SCI论文20余篇。
▍Email: chentongkai@gzucm.edu.cn

刘威

(本文通讯作者)

武汉大学 教授,博士生导师

主要研究领域
纳米药物治疗肿瘤和循环肿瘤细胞分析

主要研究成果

近年来,已在Advanced Materials, Advanced Functional Materials, Advanced Healthcare Materials, ACS Nano, Nano Letters等国际权威期刊上发表SCI论文50余篇。
▍Email: wliu@whu.edu.cn

撰稿:原文作者

编辑:《纳微快报》编辑部

关于我们     
Nano-Micro Letters 是上海交通大学主办的英文学术期刊,主要报道纳米/微米尺度相关的最新高水平科研成果与评论文章及快讯,在 Springer 开放获取(open-access)出版。可免费获取全文,欢迎关注和投稿。

E-mail:editorial_office@nmletters.org

Tel:86-21-34207624



https://blog.sciencenet.cn/blog-3411509-1210250.html

上一篇:可穿戴可充电的水系钠离子电池:正负极均告别粘结剂
下一篇:综述:细胞纳米力学研究之”利器”—软体驱动器
收藏 IP: 202.120.50.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 02:31

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部