liuwenliang的个人博客分享 http://blog.sciencenet.cn/u/liuwenliang

博文

[转载]空间坐标与投影系统系列(一):空间坐标和地图投影

已有 3985 次阅读 2021-12-16 14:57 |个人分类:GIS分析|系统分类:科研笔记|文章来源:转载

转自:https://www.whu-cveo.com/2018/07/26/coordinate-projection/

GIS处理的是空间信息,而所有对空间信息的量算都是基于某个坐标系统的,因此GIS中坐标系统的定义是GIS系统的基础,正确理解GIS中的坐标系统就变得尤为重要。坐标系统又可分为两大类:地理坐标系统、投影坐标系统。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)大地基准面(Datum)地图投影(Projection)三者的基本概念及它们之间的关系。

1、地球椭球体(Ellipsoid)

地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面。假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。因此就有了地球椭球体的概念。地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度,abf被称为地球椭球体的三要素。



对地球椭球体而言,其围绕旋转的轴叫地轴。地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统




2、大地基准面(Geodetic datum)

大地基准面(Geodetic datum),设计用为最密合部份或全部大地水准面的数学模式。它由椭球体本身及椭球体和地表上一点视为原点间之关系来定义。此关系能以 6个量来定义,通常(但非必然)是大地纬度、大地经度、原点高度、原点垂线偏差之两分量及原点至某点的大地方位角。

我们把地球椭球体和基准面结合起来看,在此我们把地球比做是“马铃薯”,表面凸凹不平,而地球椭球体就好比一个“鸭蛋”,那么按照我们前面的定义,基准面就定义了怎样拿这个“鸭蛋”去逼近“马铃薯”某一个区域的表面,X、Y、Z轴进行一定的偏移,并各自旋转一定的角度,大小不适当的时候就缩放一下“鸭蛋”,那么通过如上的处理必定可以达到很好的逼近地球某一区域的表面。

因此,从这一点上也可以很好的理解,每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系–西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。地球椭球体和基准面之间的关系以及基准面是如何结合地球椭球体从而实现来逼近地球表面的可以通过下图一目了然。



3、投影坐标系统(Projected Coordinate Systems )

地球椭球体表面也是个曲面,而我们日常生活中的地图及量测空间通常是二维平面,因此在地图制图和线性量测时首先要考虑把曲面转化成平面。由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面直角坐标或极坐标之间的关系。这种在球面和平面之间建立点与点之间函数关系的数学方法,就是地图投影方法。

每一个投影坐标系统都必定会有Geographic Coordinate System(地理坐标系统)。那么我们从这一角度上解释一下投影和投影所需要的必要条件:将球面坐标转化为平面坐标的过程便是投影过程;投影所需要的必要条件是:第一、任何一种投影都必须基于一个椭球(地球椭球体),第二、将球面坐标转换为平面坐标的过程(投影算法)。简单的说投影坐标系是地理坐标系+投影过程

我们从透视法(地图投影方法的一种)角度来直观的理解投影, 几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上。



可以按照变形性质将投影方法如下分类:等角投影(Conformal Projection) 、 等积投影(Equal Area Projection)、等距投影(Equidistant Projection)、等方位投影(True-direction Projection)四种。每种投影根据其名称就可以知道其方法保证了数据的那些几何属性,在实际应用过程中应根据需求来选取某种投影。

接下来我们来看看我们国家通常采用的投影——高斯—克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。 设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯-克吕格投影平面。高斯—克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯—克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。




高斯-克吕格投影以6度或3度分带,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为X轴(纵轴,纬度方向),赤道投影后为Y轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移500公里,即东伪偏移值为500公里,由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如(4231898,21655933)其中21即为带号,同样所定义的东伪偏移值也需要加上带号,如21带的东伪偏移值为21500000米。

我国目前常用的坐标系有北京54、西安80、WGS-84和CGCS2000四种坐标系,后续文章中,我们将会详细介绍这几种坐标系及其相互之间的转换方式。




https://blog.sciencenet.cn/blog-3409972-1316843.html

上一篇:[转载]利用Python中的的pyproj库实现地理坐标向投影坐标转换
下一篇:Node.js npm源码编译命令
收藏 IP: 210.72.26.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 12:19

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部