JOS的个人博客分享 http://blog.sciencenet.cn/u/JOS

博文

专家视点 | 张青:半导体激子极化激元

已有 8397 次阅读 2019-9-6 16:55 |系统分类:论文交流

1951年,黄昆先生在研究离子晶体声子和光子耦合时首次提出极化激元的概念并获得其波矢色散曲线。其后,Hopfield等人将黄昆先生的理论扩展至光子与激子相互作用,并证实声子极化激元的拉曼散射效应。至今,极化激元仍是光学与凝聚态物理学学科的重要研究课题之一,并以此发展出表面等离激元学等新兴学科。随着信息时代的快速发展,人们对于提高信息的运算速度、降低器件功耗的需求越来越迫切,开发更高速度、更低功耗的光电子器件成为一大发展趋势。激子极化激元是光子和激子发生强耦合后所形成的准粒子,它具有如光子类似的低质量,而激子成分使之易与微观粒子发生相互作用并被调控。比如,作为一种玻色子,激子极化激元在较高温度,如室温下发生玻色爱因斯坦凝聚,可用于探索固态物质的量子动力学和开发高速、低损耗的光电子器件。


在最新出版的《半导体学报》2019年第9期上,北京大学张青教授和国家纳米中心刘新风研究员介绍了半导体材料激子极化激元,内容主要包括激子极化激元的提出、独特性质和研究现状等。当前,室温电泵浦激子极化激元凝聚在II-VI/III-V半导体中实现,如何制造出低功耗、高可靠性、工业级别激子极化激元器件是未来的发展趋势。同时,具有高激子结合能的新兴半导体材料如二维半导体和金属卤化物钙钛矿逐渐起步,如钙钛矿半导体结合了无机和有机半导体的优点,具有高激子振子强度、长程双极载流子输运、高缺陷容忍度、易调谐带隙以及低成本的制造工艺,为发展灵活可靠、低成本,低能耗的激子极化激元器件提供了新的研究平台。


In 1951, Huang firstly proposed the concept of polariton and derived its dispersion relation by combing lattice vibration in ionic crystals with electromagnetic waves using classic electromagnetic theory, which was primarily aimed to explain light retardation effect (see Fig. 1)[1]. Hopfield et al. extended Huang’s theory to exciton−photon interaction in crystals, experimentally demonstrated Raman scattering by phonon polaritons and formally proposed the name of “polariton” from “polarization” and “photon”[2, 3]. Since then, polariton has been widely studied in fundamental and application research fields.


6.jpg

Figure 1.  The principle of the interaction between photons and lattice vibration.


Polariton is half-matter, half-light quasi-particle that forms when the energy transfer rate between polarized particles in matter (e.g. exciton, phonon, plasmon, magneton) and photons is faster than their dissipative rate. Inheriting from the matter which is massive and controllable as well as the photon which is massless and inactive, polariton exhibits a light mass and interactive behavior, and hence creates an idea platform to explore quantum electromagnetic dynamics in solid-state matters and develop high-speed, low-loss devices.


With revolution and rapid advances in semiconductor and microfabrication technologies, exciton–polariton (EP) has aroused great attentions from worldwide scientists in particular when Bose–Einstein condensation (BEC) of EP was realized in GaAs and CdTe quantum wells under optical pump in 2000s[4, 5]. Researchers consider that the EP–BECs make photons controllable by slowing their velocity, and hence could be applicable to develop optical chips with higher computing speed and lower energy consumption in comparison to electronic devices. Considerable efforts have been made, and till so far room temperature EPs have been realized in a variety of inorganic and organic semiconductors[6−9]. Moreover, electrically-driven BECs from InGaAs and EPs from organic semiconductors compound, such as 9,10-bis(phenylethynyl)anthracene, have been achieved at room temperature[10, 11]. Very recently, photo-transistors applying EP–BECs have been established, and new concepts such as parity-time-symmetry are introduced to extend the capability of light manipulation as well as lower threshold of semiconductor lasers[12−14].


To date, on the one hand, the research in EPs of these well-established semiconductors is still blooming, and continuous efforts are devoted to push laboratory devices to industry-friendly products. The central issues include low consumption, reliability and mass fabrication, etc. On the other hand, this area grows rapidly with the emergence of new materials including two dimensional semiconductors and metallic halide perovskites, etc.[15−21]. The perovskites combine the advantages of inorganic and organic semiconductors, exhibiting high exciton oscillator strength, long-range bipolar carrier transport, high defect tolerance, easy-tuning of band gap as well as low-cost fabrication processes[22−24]. In the last few years, several groups from Singapore, China and U.S.A. have reported EPs and EP−BEC effects at room temperature as well as continuous wave pumped EP lasing from the perovskite family[15−18, 25]. Despite of structure instability, perovskite raises the possibility to develop flexible, low cost, and low energy consumption EP devices.


References

[1]  Huang K. Lattice vibrations and optical waves in ionic crystals. Nature, 1951, 167, 779

[2]  Henry C, Hopfield J. Raman scattering by polaritons. Phys Rev Lett, 1965, 15, 964

[3]  Hopfield J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev, 1958, 112, 1555

[4]  Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409

[5]  Deng H, Weihs G, Santori C, et al. Condensation of semiconductor microcavity exciton polaritons. Science, 2002, 298, 199

[6]  Christopoulos S, Von Högersthal G B H, Grundy A, et al. Room-temperature polariton lasing in semiconductor microcavities. Phys Rev Lett, 2007, 98, 126405

[7]  Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nat Phys, 2014, 10, 803

[8]  Kéna-Cohen S, Forrest S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photon, 2010, 4, 37

[9]  Plumhof J D, Stöferle T, Mai L, et al. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat Mater, 2013, 13, 247

[10]  Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497, 348

[11]  Cui Q H, Peng Q, Luo Y, et al. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv, 2018, 4, eaap9861

[12]  Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1778

[13]  Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102

[14]  Lien J Y, Chen Y N, Ishida N, et al. Multistability and condensation of exciton–polaritons below threshold. Phys Rev B, 2015, 91, 024511

[15]  Evans T J, Schlaus A, Fu Y, et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater, 2018, 6, 1700982

[16]  Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982

[17]  Zhang S, Shang Q, Du W, et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv Opt Mater, 2018, 6, 1701032

[18]  Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335

[19]  Dufferwiel S, Schwarz S, Withers F, et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun, 2015, 6, 8579

[20]  Lundt N, Klembt S, Cherotchenko E, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun, 2016, 7, 13328

[21]  Low T, Chaves A, Caldwell J D, et al. Polaritons in layered two-dimensional materials. Nat Mater, 2017, 16, 182

[22]  Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10, 391

[23]  Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photon, 2016, 10, 295

[24]  Zhang Q, Su R, Du W, et al. Advances in small perovskite-based lasers. Small Methods, 2017, 1, 1700163

[25]  Fieramosca A, Polimeno L, Ardizzone V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci Adv, 2019, 5, eaav9967

   

7.jpg

张青教授,北京大学工学院材料科学与工程系研究员,博士生导师。


点击阅读张青教授文章:

Exciton–polaritons in semiconductors

Qing Zhang and Xinfeng Liu

J. Semicond. 2019, 40(9), 090401

doi: 10.1088/1674-4926/40/9/090401

Full text



“纪念黄昆先生百年诞辰”专刊


《半导体学报》组织了一期“纪念黄昆先生百年诞辰”专刊。该专刊包括4篇综述文章和4篇研究论文,已于2019年第9期正式出版并可在线阅读,欢迎关注。


专刊详情请见:半导体学报2019年第9期——纪念黄昆先生百年诞辰专刊



8.jpg

扫描二维码关注获得更多信息




https://blog.sciencenet.cn/blog-3406013-1196922.html

上一篇:夏建白院士忆黄昆先生
下一篇:半导体学报2019年第10期目次
收藏 IP: 223.71.16.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-23 21:37

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部