微积分大观园分享 http://blog.sciencenet.cn/u/skywalkon

博文

莱布尼兹微积分可以嵌入到一阶逻辑中吗?

已有 2037 次阅读 2019-12-1 19:45 |个人分类:异类微积分|系统分类:观点评述| 魏尔斯特拉斯, 鲁滨逊 |文章来源:转载

Is Leibnizian Calculus Embeddable in First Order Logic?


摘要 为了探讨莱布尼兹无穷小微积分在一阶逻辑(FOL)和现代框架中可嵌入性,我们提出将本体论问题放在一边,关注过程问题。这将使Leibiniz的程序能够在一个只加上少量其他因素——例如无限接近的关系——的FOL的框架内得到解释。正如我们在这里所讨论的,如果一阶逻辑确实适用于为莱布尼兹无穷小微积分中发现的推理动作(inferential moves)做出现代表述,那么现代无穷小框架比现代魏尔斯特拉斯方程更合适解释莱布尼兹无穷小微积分。

关键词 一阶逻辑;无穷小微积分;本体;程序;莱布尼兹,魏尔斯特拉斯,鲁滨逊

Abstract】To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on procedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal calculus, then modern infinitesimal frameworks are more appropriate to interpreting Leibnizian infinitesimal calculus than modern Weierstrassian ones.

Keywords First order logic Infinitesimal calculus Ontology Procedures Leibniz Weierstrass Abraham Robinson

http://dx.doi.org/10.1007/s10699-016-9495-6dx.doi.org

Is Leibnizian calculus embeddable in first order logic?arxiv.org

Matches for: MR=3720412mathscinet.ams.org




https://blog.sciencenet.cn/blog-3396343-1208364.html

上一篇:解释莱布尼茨和欧拉的无穷小数学
收藏 IP: 111.192.242.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 18:35

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部