ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]CPB封面文章和亮点文章 | 2022年第3期

已有 784 次阅读 2022-3-23 17:12 |系统分类:论文交流|文章来源:转载

1.jpg

封面文章.png

Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal

Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳)

Chin. Phys. B, 2022, 31 (3):  037102


文章亮点介绍.png

近年来,TaAs,NbAs,TaAs2,NbAs2等二元磷族半金属由于具有拓扑非平庸电子结构、负磁阻、外尔费米子、强磁场下不饱和磁电阻等原因,受到了研究人员的广泛关注。V与Nb和Ta同属VB族元素,但之前对VSb2的物性研究较少。本文通过Sb自助溶剂法生长了V1-δSb2单晶,发现样品中存在V原子空位。通过对V1-δSb2比较系统的电输运,比热和磁化率测量,发现该体系具有较大的纵向磁阻和明显的弱反局域化效应。


平带电子结构一般是强关联现象的温床,在凝聚态物理中,平带区域的动能几乎不随波矢变化,意味着体系中有很大的能态密度。此时系统对动能的影响有限,对势能的作用就会十分明显,一些强关联的现象就会出现。本文在对V1-δSb2晶体的研究中发现其磁化率和比热在低温7 K以下发生了反常的增大。作者首先排除了磁有序和反铁磁性的影响,然后结合能带计算分析,认为这是由于V1-δSb2晶格在低温下发生畸变,致使平带靠近或者穿越费米面造成的。这些发现表明V1-δSb2可以为研究平带电子结构的奇特物性提供理想平台。

原文链接

PDF

2.png

Fig. 1. (a) The normalized MR at temperature ranging from 1.8 K to 300 K. (b) The Fermi surfaces of VSb2 crystals from first-principle calculation. Left is total fermi surface for VSb2, right is fermi surface with along Γ-X.


亮点文章.png

Electronic structure and spin-orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X=Se, Te)

Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林)

Chin. Phys. B, 2022, 31 (3):  037101


文章亮点介绍.png

三元金属硫族化合物相对于二元化合物在晶体结构和电子性质上表现出更高的复杂性和可调控性,从而为探索和研究新物理提供了一个丰富的平台,例如磁性与拓扑之间的相互作用、巨反常霍尔效应以及新奇的拓扑量子相等。


本文利用高分辨的角分辨光电子能谱和第一性原理计算方法系统研究了新发现的三元金属硫族化合物Cu2TlX2X=Se,Te)单晶的能带结构,首次给出了高质量的谱学表征。尽管Cu2TlX2具有准二维的晶体结构,ARPES实验仍观测到明显的kz色散,表明层间耦合在体系电子结构中起了重要的作用。实验得到的能带和理论计算符合得非常好,计算结果显示Cu2TlSe2和Cu2TlTe2分别具有半导体和半金属相,表明体系的带隙可通过Se/Te组分调控。实验在Cu2TlTe2中发现了自旋轨道耦合效应导致的能带简并度的改变以及在高对称方向打开的约0.4 eV的能隙,表明体系中有强自旋轨道耦合效应。此外实验还在Cu2TlTe2高对称的X点附近观察到明显的能带折叠,表明可能存在表面重构或表面电荷密度波。该研究提供了一类具有强自旋轨道耦合效应的、能隙可调的三元硫族化合物。

原文链接

PDF

3.png

Fig. 3. (a)–(c) ARPES measured band dispersions of Cu2TlTe2 along high symmetry directions. (d), (e) Band structures obtained by ab initio calculation with (d) and without (e) spin–orbit coupling (SOC). The red arrows indicate the band gaps induced by SOC. The red and blue circles indicate the band crossings with small energy gap. Data were taken with 122 eV photons at 10 K.


亮点文章.png

Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures

Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉)

Chin. Phys. B, 2022, 31 (3):  037301


文章亮点介绍.png

二维磁性材料是二维材料家族的重要成员,由于其独特的自旋电子性质和易于堆垛的优势,为开发未来自旋电子器件提供了新颖平台。近年来越来越多的二维材料被发现具有长程磁有序。磁邻近效应普遍存在于二维范德华磁性异质结中,对磁近邻效应进行精准调控是构筑各种新奇量子物态的重要手段。


本文通过第一性原理计算方法研究了锑烯/铁锗碲范德华异质结的自旋极化电子结构。由于磁邻近效应,在锑烯的导带底和价带顶处出现了自旋劈裂。本文提出了一个低能有效哈密顿量模型对自旋劈裂进行描述。该自旋劈裂可以进一步通过施加外电场、改变层间距或改变堆叠构型等方法进行调控。研究表明,异质结中锑烯的自旋劈裂并不单独依赖于最近邻的锑原子和铁原子之间的距离,因此异质结中的磁邻近效应可能受到多种因素的调节,包括层间电子态杂化和局域电子环境等。该工作促进了人们对二维范德华磁性异质结中磁邻近效应的认识,为类似二维磁性异质结体系在低维物态调控和自旋电子学等领域的研究和应用提供了重要参考。

原文链接

PDF

4.png

Fig. 2. Band structures and charge density difference. (a) Band structure of freestanding antimonene, and the Fermi level is set to zero. (b) Band structure of the V4 configuration. Red (blue) lines represent the spin-up (spin-down) band of antimonene in the heterostructure. (c) and (d) Zoom in the CBM and VBM of (b). (e) Charge density difference of the V4 configuration, the isosurface value is 0.0008 e3. Yellow (blue) region represents net charge gain (loss).


亮点文章.png

Measuring Loschmidt echo via Floquet engineering in superconducting circuits

Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平)

Chin. Phys. B, 2022, 31 (3):  030307


文章亮点介绍.png

十九世纪Loschmidt在关于热力学第二定律的讨论中曾质疑玻尔兹曼:由于经典力学的时间反演不变性,系统熵减少的演化过程也应该存在,原则上只要微观上把所有分子的运动速度都反号。这被称为Loschmidt悖论,它对之后非平衡动力学过程研究的发展有着深远的影响。五十年代Hahn的自旋回波实验首次在量子层面上实现了可控的时间反演过程。随着现代量子技术的不断发展,目前在有限自由度的量子系统中讨论时间反演和Loschmidt回波现象已成为可能。


超导量子器件具有能耗低、易扩展、易操控和相对较长的量子相干时间等特点,目前在实现量子计算和量子模拟方面是最具优势的方案之一。本文报道了超导10量子比特器件中Loschmidt回波的实验研究。实验通过周期场驱动实现了哈密顿量的时间反演操作,并重点研究了Bell初态下非理想的次近邻(NNN)耦合项对Loschmidt回波的影响。采用比特频率失谐压制次近邻耦合的方法,显示了保真度会有很大的提高,但对比完全不考虑次近邻相互作用的结果仍有一定的距离(见下图)。这些结果表明Loschmidt回波对时间反演过程中的微扰非常敏感。


Loschmidt回波可用于多体系统量子混沌现象的研究,量子退相干问题和纠缠传播的定量分析,以及离散时间的量子行走等问题的研究,本文工作为超导量子比特系统在相关非平衡动力学过程方面的研究打下了基础。

原文链接

PDF

5.png

Fig. 4. Overlap fidelity versus Loschmidt echo time for the initial state |Φ56. The solid and dashed lines represent the calculated results considering NNN couplings with and without qubit detuning, respectively. The squares and circles are the corresponding experimental data. The dash-dotted line is the numerical result without considering the NNN coupling.



亮点文章.png

Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids

Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌)

Chin. Phys. B, 2022, 31 (3):  037802


文章亮点介绍.png

基于CH3NH3PbI3的钙钛矿由于其优异的光学和电学优势,在太阳能电池、激光器、光电探测器等领域显示出巨大的前景。然而,由于它对环境的氧气和水分非常敏感,严重限制其发展。


本文通过简单的两步顺序溶液法在玻璃基板上合成了有/无BMIMBF4离子液体的MAPbI3钙钛矿薄膜。实验证明,钙钛矿薄膜中的BMIMBF4离子液体起到了钝化作用。在空气中放置一周后,含有BMIMBF4的MAPbI3薄膜的光致发光(PL)强度是纯MAPbI3薄膜的10倍;在405 nm连续激光照射下,含有BMIMBF4的MAPbI3薄膜的荧光持续时间约为2.75分钟,而纯MAPbI3薄膜的荧光持续时间仅为6秒左右。此外,BMIMBF4的离子液体具有高离子电导率,可加速电子传输。因此,该方法对提高水氧稳定性和电学性能非常有效,在钙钛矿开发中具有广阔的应用前景。

原文链接

PDF

6.png

Fig. 3. (a) The PL spectra of the film (I) and film (II) measured after one week. The dark-field optical microscope of the film (I) panel (b) and film (II) panel (c) after one week under the focus of 405-nm laser. Panels (d) and (e) are the experimental data (dotted) and the corresponding fitting curves of film (I) and film (II) fluorescent duration, respectively.


公用专题推荐.png

SPECIAL TOPIC — Emerging photovoltaic materials and devices

SPECIAL TOPIC — Organic and hybrid thermoelectrics

SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials

SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies

SPECIAL TOPIC — Non-Hermitian physics

SPECIAL TOPIC — Unconventional superconductivity

SPECIAL TOPIC — Two-dimensional magnetic materials and devices

SPECIAL TOPIC — Ion beam modification of materials and applications

SPECIAL TOPIC — Quantum computation and quantum simulation

SPECIAL TOPIC —Twistronics

SPECIAL TOPIC — Machine learning in condensed matter physics

SPECIAL TOPIC — Phononics and phonon engineering

SPECIAL TOPIC — Water at molecular level

SPECIAL TOPIC — Optical field manipulation

SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids

SPECIAL TOPIC —Terahertz physics

SPECIAL TOPIC — Ultracold atom and its application in precision measurement

SPECIAL TOPIC — Topological 2D materials

SPECIAL TOPIC — Active matters physics

SPECIAL TOPIC — Physics in neuromorphic devices

SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

SPECIAL TOPIC — Topological semimetals

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Fundamental research under high magnetic fields

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism and Magnetic Materials


公用底.png

官网:http://cpb.iphy.ac.cn        https://iopscience.iop.org/journal/1674-1056




https://blog.sciencenet.cn/blog-3377544-1330717.html

上一篇:[转载]CPB2022年第2期编辑推荐文章
下一篇:[转载]CPB2022年第3期编辑推荐文章
收藏 IP: 221.197.36.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-18 20:00

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部