ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]CPB封面文章和亮点文章 | 2021年第6期

已有 972 次阅读 2021-7-12 15:46 |系统分类:论文交流|文章来源:转载

1.jpg


封面文章.png

Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets

Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik(善德伟), and Zi Yang Meng(孟子杨)

Chin. Phys. B, 2021, 30 (6):  067505

文章亮点介绍.png

近年来,由于特殊价键固体(VBS)态的发现及其可能存在的低温退禁闭量子相变点,关于SrCu2(BO3)2材料的理论和实验研究受到科学家的广泛关注。对于其中的相变类型、临界物理特性等基本问题的探讨目前仍存在很大争议。Shastry Sutherland(SS)模型是描述该材料低温相变最理想的模型,然而SS模型上存在几何阻挫,无法实现量子蒙特卡洛(QMC)的大规模计算模拟,也无法给出令人普遍信服的数值结果。于是我们提出了一个没有阻挫的三维checker-board J-Q(CBJQ)模型,它能够描述SS模型中plaquette-singlet(PS)到antiferromagnetic(AFM)相的相变。CBJQ模型上的量子蒙特卡洛计算结果(Phys. Rev. Lett. 124, 206602 (2020))让我们相信三维CBJQ能够描述SrCu2(BO3)2中的量子临界特性。同时,二维CBJQ模型上发现的PS到AFM相是一个出现了涌现对称性的特殊一级相变(Nat. Phys. 15 678 (2019))。这些结果推动我们深入探索CBJQ模型,尝试了解系统从二维向三维过渡时发生的变化,探讨在SrCu2(BO3)2上能够观测到退禁闭量子临界或者临界点涌现对称的可能性。


本工作通过量子蒙特卡洛数值计算,我们给出了包含温度和相互作用的完整相图,同时发现在PS, AFM和顺磁相三相点附近的区域内所有的相变都是一级相变。随层间相互作用增大涌现对称性逐渐消失,转变为传统一级相变。但考虑到真实实验材料下层间相互作用非常弱,仍然非常有可能处于存在涌现对称性的相变区间。这一计算结果完善了SrCu2(BO3 )2 的相图,为实验更深入地研究SrCu2(BO3)2,继续探索存在涌现对称性的特殊相变提供了充足的数据支持和动力。我们有理由相信,在SrCu2(BO3)2上极有可能观测到超越郎道范式的新的量子相变类型。

原文链接

PDF

2.png

Figure 3. Phase diagram of the 3D CBJQ model based on SSE-QMC simulations and finite-size scaling analysis at J = 0, 0.01, and 0.1. When J = 0, the long-range AFM state only exists at zero temperature, while for J = 0.01 and 0.1 it extends to finite temperature. The small brown solid dots show transition points obtained from Binder cumulants crossing points in scans vs temperature, as exemplified in Fig. 2. The position of larger purple solid dot at T = 0 in the J  = 0 plane show the location of the PS–AFM quantum phase transition of the 2D CBJQ model determined in previous work. In the J = 0.01 and 0.1 panels, the triple points (purple dots) at which all three phases meet at T > 0 ( and which evolve from the quantum critical point at J = 0) are obtained from scans vs g at fixed T, as illustrated in the framed magnifications of the relevant temperature regions. The green dashed lines correspond to T = 0.06, 0.085, and 0.09 for J = 0.01 and T = 0.1, 0.162, and 0.168 for J = 0.1. Based on results such as those in Figs. 4 and 5, the triple-point is located between the two upper green dashed lines, for J = 0.1 at T = 0.165(2) and for J = 0.01 at T = 0.088(2) (and the corresponding g values are g≈0.041 and 0.16, respectively).


亮点文章.png

Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy

Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江)

Chin. Phys. B, 2021, 30 (6):  067403

文章亮点介绍.png

拓扑材料因其新颖的量子现象和物理性质以及潜在的应用而备受关注。在磁性拓扑材料中,可以通过引入磁性来破坏时间反演对称性而产生新的拓扑相。AMnPn2(A= Ca, Sr, Ba, Eu 或Yb; Pn= Bi 或Sb) 家族为寻找本征磁性拓扑材料提供了理想的平台。在这类材料中,Bi或者Sb层可以容纳狄拉克费米子,Mn的亚晶格可以提供磁性环境,在A位引入Eu或者Yb可以进一步操纵体系中的磁结构。这类材料的电子结构和拓扑性质还与其晶体结构密切相关。


BaMnSb2具有不同于家族中其他材料的独特晶体结构。本工作通过角分辨光电子能谱测量和能带结构计算对BaMnSb2的详细研究,发现BaMnSb2表现出奇异的电子结构:(1) 所有观察到的能带几乎都是线性的,线性能带延伸到很深的能量范围 (1eV); (2) 观测到的费米面主要由Γ点周围的一个空穴型费米口袋和Y点上的一个强点组成,这些费米面都是由线性能带的交叉点形成的;(3) 测量的电子结构明显偏离已有的能带计算结果。这些结果为寻找新的拓扑材料和新奇物性提供了重要的信息。

原文链接

PDF

3.jpg

Figure 1. Comparison between the calculated and measured electronic structures of BaMnSb2. (a) Calculated band structure of BaMnSb2 with spin-orbit coupling at kz= 0. (b) Measured band structure of BaMnSb2. (c-d) Calculated Fermi surface (c) and constant energy contour at a binding energy of 0.3 eV (d). (e-f) Measured Fermi surface (e) and constant energy contour at a binding energy of 0.4 eV (f). 


亮点文章.png

Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system

Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆)

Chin. Phys. B, 2021, 30 (6):  068502

文章亮点介绍.png

在过去十几年,量子信息的处理主要集中在几个GHz的微波频率段,例如:超导qubit、超导微腔、金刚石NV色心中电子的自旋、离子的精细态等。但由于在常温下的热噪声和高的损耗率,微波频率光子很难长距离传输。几百THz的光学光子具有与微波光子互补的特性,例如在光纤传输中超低的传输损耗、几乎没有热占据、高效的单光子探测、低的退相干和衰减率等,使得光学光子可以作为理想的信息传输载体,通过光纤或波导实现长距离两个节点之间的信息分发。但由于弱的单光子非线性,也阻碍了光学光子的发展。未来的通信网络需要结合以上两者的优势,保证微波的信息处理能力和光波的信息传输能力,解决这个问题的重要方法是实现微波-光波的信息的双向转换。


本文作者利用超灵敏的纳米机械振子作为微波-光波转换的界面,理论上提出了一种混合光电机械系统模型。基于腔光力耦合特性,腔光力中的纳米机械振子,在相差好几个数量级的微波和光波光子之间搭建一座耦合的桥梁。由于微波场的作用,原来的单窗口的腔光力诱导透明,被劈裂为双窗口的诱导透明,中间的吸收峰取决于微波场。利用这种特性,本文计算并获得了输出场的近似解析表达式,理论上实现了微波和光波之间波形的双向转换,并通过解析和数值模拟论证了三种波形转换,其内部转换效率取决于微波和光波腔场的协同数。本文的研究结果有望在未来通信网络中的信息传输和编码等方面获得应用。

原文链接

PDF

4.png

Figure 4. Numerical and analytic results of the waveform conversion. Panels (a1), (b1), and (c1) show the input cosine, square, and sawtooth microwave waveforms injected into SCWR, and panels (a2), (b2), and (c2) show the numerical and analytic results of the cosine, square, and sawtooth waveform conversions, respectively.


公用专题推荐.png

SPECIAL TOPIC — Ion beam modification of materials and applications

SPECIAL TOPIC — Quantum computation and quantum simulation

SPECIAL TOPIC —Twistronics

SPECIAL TOPIC — Machine learning in condensed matter physics

SPECIAL TOPIC — Phononics and phonon engineering

SPECIAL TOPIC — Water at molecular level

SPECIAL TOPIC — Optical field manipulation

SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids

SPECIAL TOPIC —Terahertz physics

SPECIAL TOPIC — Ultracold atom and its application in precision measurement

SPECIAL TOPIC — Topological 2D materials

SPECIAL TOPIC — Active matters physics

SPECIAL TOPIC — Physics in neuromorphic devices

SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

SPECIAL TOPIC — Topological semimetals

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Fundamental research under high magnetic fields

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism and Magnetic Materials


公用底.png

官网:http://cpb.iphy.ac.cn  

          https://iopscience.iop.org/journal/1674-1056



https://blog.sciencenet.cn/blog-3377544-1295166.html

上一篇:[转载]数据论文 | 一维原子线的高通量筛选及其电子态性质的第一性原理计算
下一篇:[转载]CPB2021年第6期编辑推荐文章
收藏 IP: 159.226.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-25 17:28

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部