||
Evolution of domain structure in Fe3GeTe2
Siqi Yin(尹思琪), Le Zhao(赵乐), Cheng Song(宋成), Yuan Huang(黄元), Youdi Gu(顾有地), Ruyi Chen(陈如意), Wenxuan Zhu(朱文轩), Yiming Sun(孙一鸣), Wanjun Jiang(江万军), Xiaozhong Zhang(章晓中), and Feng Pan(潘峰)
Chin. Phys. B, 2021, 30 (2): 027505
近年来,二维磁性材料因其独特的物理特性而备受关注,由二维磁性材料堆垛的异质结器件为自旋电子学器件在纳米尺度上的小型化提供了可能。与块体磁性不同,二维铁磁材料的磁性对其厚度具有强烈的依赖性。研究二维磁性材料中磁畴结构随厚度的变化规律,对于更好地理解二维磁性具有重要意义。
本文对二维铁磁材料Fe3GeTe2的畴结构和磁化翻转随厚度的变化进行了较为系统的研究和讨论。研究表明,随着Fe3GeTe2厚度的增加,磁畴由圆形畴转变为树枝状畴再转变为迷宫畴,该过程伴随着矫顽力的减小和磁滞回线由矩形逐渐变为倾斜。这种变化起源于随着Fe3GeTe2厚度的增加,能量由交换相互作用能主导转变为偶极相互作用能主导。本文的研究有助于我们更加深入地理解二维磁性,并有望推动基于二维磁性材料的磁畴操控技术发展和自旋电子学器件应用。
原文链接
Fig. 1. Optical micrograph of FGT with different thicknesses and its corresponding domain structures. The region I, II and III in the left panel denote FGT with different thicknesses, and their corresponding typical magnetic domain structures are depicted as type I, type II and type III in the right panel, respectively. The inset figure is the atomic structure of monolayer FGT from view from xz and xy planes. FeI and FeII denote the two inequivalent Fe sites in the +3 and +2 states, respectively.
Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛)
Chin. Phys. B, 2021, 30 (2): 027401
超导体的磁通钉扎决定了超导的载流能力,对超导材料的应用具有重要意义。在层状结构的超导体中,人们普遍认为强烈的层间耦合将提高磁通钉扎,并降低超导的各向异性。然而这一机制是否适用于层状的铁基超导尚不清楚。因此,本文选取典型的双层铁基超导体CaKFe4As4(Fe1144)和KCa2Fe4As4F2(Fe12442),利用电输运和磁扭矩测量同时在电和磁两个方面对铁基超导体的各向异性和磁通钉扎进行研究。结果显示在Tc附近,Fe1144的超导各向异性γ≈3,远小于Fe12442(γ≈15);而Fe1144的临界电流密度高于Fe12442,说明Fe1144具有较高的涡旋钉扎能。进而结合其他铁基超导体的文献数据,作者发现铁基超导体的磁通钉扎和超导的各向异性具有强的关联。此研究表明层间耦合对铁基超导体的磁通钉扎起着重要的作用,这将有助于铁基超导材料未来的实用化。
原文链接
Figure 4. Anisotropy parameters γ of Fe1144 and Fe12442 obtained from torque measurements. (a) H dependence of g at the reduced temperature T/Tc = 0.97. (b) T dependence of g for H = 7T. Error bars are the uncertainty of fit and the dash lines are guide to the eyes.
Figure 5. The critical current density Jc of Fe1144 (solid squares) and Fe12442 (hollow circles) as a function of H cosθ at T/Tc = 0.97 (a) and H = 7T (b). Solid stars are data taken from Ref. [Ishida S, et al. npj Quantum Materials, 2019, 4(1): 1-7.].
Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉)
Chin. Phys. B, 2021, 30 (2): 027803
低维纳米材料的电子波函数通常局域于材料表面,弱的范德华相互作用也可以极大地改变材料的物性。因此,通过界面结构设计可以实现对低维纳米材料物性的有效调控。本文研究了通过范德华相互作用实现对二维纳米材料非线性光学信号的调控。以二硫化钼/石墨烯异质结为例,作者发现在激发光能量等于激子能量的二分之一的共振激发下,石墨烯可以减弱单层二硫化钼激子谐振强度,从而实现30%的二次谐波非线性光学强度抑制。而在非共振激发时,石墨烯和二硫化钼层间的激发则使得二硫化钼的二次谐波强度增强了130%。非线性光学是现代光学的基本组成部分,是经典和量子技术的核心。本研究提供了一种调控二维非线性光学特性的有效方法,有望推动低维纳米材料在光电和光子器件中的广泛应用。
原文链接
Figure 1. SHG modulation in MoS2 by graphene covering. (a) Schematic illustration of optical SHG experiments on MoS2 monolayer and MoS2/graphene heterostructure. (b) Wavelength-dependent SHG intensity of monolayer MoS2 and MoS2/graphene heterostructure. Both curves show peaks around A-exciton and B-exciton of MoS2. (c) The SHG tenability, which describes the SHG intensity of MoS2/graphene to that of MoS2, is plotted. With interfacing graphene, the SHG intensity attenuated to ~30% under resonance excitation, while slightly enhanced under off-resonance excitation.
Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云)
Chin. Phys. B, 2021, 30 (2): 023101
对于含有三个粒子以上的原子或分子体系,利用瑞利-李兹变分法能够获得精度非常高的非相对论能级和波函数。例如氦原子基态变分能量可以精确计算到40多位有效数字,这在任何实际应用中都可以说是精确的。在变分法的使用中,基函数非线性变分参数的优化是非常关键的一环。在束缚态计算中,利用能量极小值条件,我们可以通过梯度优化使能量下降来逼近精确值,从而完美地解决这一问题。但是对于共振态来说,由于没有相应的极值定理,梯度优化无法实现。
本文创造性提出了一种在共振问题中构造极值的方法(CCR-GO),该方法基于目前在原子、分子和核物理共振态计算中广泛使用的复坐标转动方法(在核物理中称为复标度法),从而使得梯度优化这一强有力的工具有望在原子、分子和核物理共振态计算中广泛使用。CCR-GO方法的主要优势在于不需要手动调节非线性变分参数,从而大大减小了参数调节的工作量。能量在复平面沿着数学上定义良好的优化迭代序列收敛到共振点,并且可以在较小的基底下获得共振能量和宽度较高的收敛精度。本文挑选了一些具有代表性的库仑三体体系(包括弱束缚Ps-和H-,紧束缚He原子,以及奇异准分子反质子氦),利用非线性参数扩展到复数的Hylleraas变分基函数对CCR-GO方法的有效性进行测试,计算结果显著提高了这些测试能级的参考值。这些能级的角动量范围从0一直到30,共振宽度范围从10-2到10-9,这说明本文提出的方法在原子、分子共振中具有广泛的普适性。在变分基底对体系真实物理图像描述正确的前提下,可以有效解决非线性变分参数优化这一环节,并提高结果精度。本方法并不局限于库仑三体体系,也可以利用关联高斯基函数(ECG)应用到四体以上的从头计算中,利用模型势结合B样条方法也可以应用于多体问题的计算中。此外还可以应用于指数势和 Morse 势中的Dirac 粒子共振问题,从而解决球形核以及形变核共振态。
原文链接
Fig. 1. Two optimization paths based on 𝑔1(E) and 𝑔2(E) for the lowest resonant state 1Se in Ps-below the Ps (N = 2) threshold, with the size of basis set 𝒩 = 252. The inset is an enlarged view of the paths around the convergence point. Atomic units are used.
SPECIAL TOPIC —Twistronics
SPECIAL TOPIC — Machine learning in condensed matter physics
SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC — Water at molecular level
SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC — Ultracold atom and its application in precision measurement
SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC — Active matters physics
SPECIAL TOPIC — Physics in neuromorphic devices
SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale
TOPICAL REVIEW — Quantum dot displays
TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery
SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang
TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang
SPECIAL TOPIC — Strong-field atomic and molecular physics
TOPICAL REVIEW — Strong-field atomic and molecular physics
TOPICAL REVIEW — Topological semimetals
SPECIAL TOPIC — Topological semimetals
SPECIAL TOPIC — Photodetector: Materials, physics, and applications
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW — Fundamental research under high magnetic fields
Virtual Special Topic — High temperature superconductivity
Virtual Special Topic — Magnetism and Magnetic Materials
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-10 09:29
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社