ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]亮点文章 | 基于大栅金属高度的GaN沟道与AlGaN沟道HEMT器件击穿电压提升机理研究

已有 2365 次阅读 2020-5-19 09:34 |系统分类:论文交流|文章来源:转载

1.jpg

亮点文章


基于大栅金属高度的GaN沟道与AlGaN沟道HEMT器件击穿电压提升机理研究

第一作者 | 王中旭

通讯作者 | 赵胜雷,张进成


研究亮点

本文首次提出,采用大栅金属高度可以有效提高GaN沟道与AlGaN沟道HEMT器件击穿电压。仿真表明,提高栅金属高度可以扩大耗尽区宽度,降低峰值电场,从而提高栅漏平均击穿电场和击穿电压。该方法较简单有效,可推广至所有横向半导体器件,以提高器件击穿特性。


研究背景

氮化镓基高电子迁移率晶体管器件(Gallium Nitride High-electron-mobility transistors: GaN HEMT)作为第三代半导体器件,在高压大功率领域具有广泛的应用前景。GaN与AlN的临界击穿电场分别为3.3 MV/cm与12 MV/cm,AlGaN材料相对于GaN材料具有更为优越的击穿特性。已报道的GaN基MISHEMT器件,获得了3000 V的击穿电压和1 MV/cm的平均击穿电场,AlGaN基HEMT则获得了1650 V的击穿电压和1.65 MV/cm的平均击穿电场。虽然研究人员已经提出多种方法提高器件击穿电压,但是GaN沟道与AlGaN沟道HEMT的栅漏平均击穿电场强度相对于理论值还有很大提升空间,需进一步提升GaN沟道与AlGaN沟道HEMT的击穿特性。


研究方法及结果

本工作中,作者基于耗尽电容模型,提出增加栅金属高度可以有效提高GaN基HEMT器件击穿特性。通过提高栅金属高度,可以增加栅侧壁电容,进一步拓展耗尽区,从而缓解电场强度,提高击穿电压。随器件栅漏间距的增加,为了使栅侧壁电容明显增加,栅金属厚度的增加幅度也需要更大才能起到显著作用。基于栅漏间距7 μm的无场板GaN沟道HEMT,将栅金属厚度从0.8 μm提高到1.6 μm,击穿电压从953 V提高到1310 V。在相同的尺寸下,沟道层铝组分为40%的AlGaN沟道HEMT器件,增加栅金属厚度的器件电势分布更加均匀,击穿电压可以从1535 V提高到1763 V,即栅漏平均击穿电场强度提高至2.51 MV/cm。仿真与分析表明,提高栅金属高度可以有效提升GaN基HEMT的击穿特性。栅金属高度的提升并不影响直流输出和转移特性,对器件特征导通电阻没有影响,因此可以有效提升器件功率品质因数。此外,对于场板结构,可通过改变场板的厚度影响场板侧壁电容,进而对器件击穿特性产生类似的影响。


研究意义或前景

本工作提出了一种提高GaN基HEMT器件击穿特性的方法,并通过仿真证明GaN沟道与AlGaN沟道HEMT器件均可通过增加栅金属厚度的方法,显著提高器件击穿电压和功率品质因数。该研究可以拓展至所有横向半导体器件,以提升横向半导体器件的综合特性。


文章来源

Chin. Phys. B, 2020, 29 (2): 027301


原文概览

Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height


Zhong-Xu Wang(王中旭)1, Lin Du(杜林)2, Jun-Wei Liu(刘俊伟)1, Ying Wang(王颖)3, Yun Jiang(江芸)2, Si-Wei Ji(季思蔚)2, Shi-Wei Dong(董士伟)3, Wei-Wei Chen(陈伟伟)3, Xiao-Hong Tan(谭骁洪)4, Jin-Long Li(李金龙)4, Xiao-Jun Li(李小军)3, Sheng-Lei Zhao(赵胜雷)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1


1 Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Shanghai Precision Metrology and Testing Research Institute, Shanghai 201109, China;
3 China Academy of Space Technology(Xi'an), Xi'an 710000, China;
4 Sichuan Institute of Solid-State Circuits, CETC, Chongqing 400060, China


Keywords: GaN channel HEMTs, AlGaN channel HEMTs, breakdown voltage, gate metal height


 A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors (HEMTs). For GaN channel HEMTs with gate-drain spacing LGD=2.5 μm, the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2 μm to 0.4 μm. For GaN channel HEMTs with LGD=7 μm, VBR increases from 953 V to 1310 V by increasing h from 0.8 μm to 1.6 μm. The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension. For Al0.4Ga0.6N channel HEMT with LGD=7 μm, VBRincreases from 1535 V to 1763 V by increasing h from 0.8 μm to 1.6 μm, resulting in a high average breakdown electric field of 2.51 MV/cm. Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs, and this method can be utilized in all the lateral semiconductor devices.

2.png3.png4.jpg5.jpg6.jpg

CPB专题推荐

SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

TOPICAL REVIEW — New generation solar cells

TOPICAL REVIEW — Recent advances in thermoelectric materials and devices

SPECIAL TOPIC — Amorphous physics and materials

TOPICAL REVIEW — Soft matter and biological physics

SPECIAL TOPIC — Nanophotonics

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

SPECIAL TOPIC — Topological semimetals

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Nanolasers 

TOPICAL REVIEW — Physics research in materials genome

TOPICAL REVIEW — Fundamental research under high magnetic fields

SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)  

TOPICAL REVIEW — Spin manipulation in solids

TOPICAL REVIEW — Nanophotonics

TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science

TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences

SPECIAL TOPIC — Recent advances in thermoelectric materials and devices

TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials

TOPICAL REVIEW — Solid-state quantum information processing

SPECIAL TOPIC — New generation solar cells

SPECIAL TOPIC — Soft matter and biological physics

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism

TOPICAL REVIEW — ZnO-related materials and devices

TOPICAL REVIEW — Topological electronic states

TOPICAL REVIEW — 2D materials: physics and device applications

TOPICAL REVIEW — Amorphous physics and materials

TOPICAL REVIEW — High pressure physics

TOPICAL REVIEW — Low-dimensional complex oxide structures

TOPICAL REVIEW — Fundamental physics research in lithium batteries

TOPICAL REVIEW — Interface-induced high temperature superconductivity7.png



https://blog.sciencenet.cn/blog-3377544-1233842.html

上一篇:[转载]封面文章 | Triphenylene分子在Cu(111)表面自组装石墨烯生长行为研究
下一篇:[转载]CPB2019年度Highlights集萃
收藏 IP: 159.226.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-13 14:20

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部