zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

一个特殊矩阵的行列式值

已有 2128 次阅读 2017-10-8 18:41 |个人分类:特殊矩阵计算|系统分类:科研笔记

一个特殊矩阵的行列式值


$\mathrm{det}\left(\left[\begin{array}{cccc} \sum_{i=1}^{n}\frac{k_{1}!}{(i-1)!(k_{1}-i+1)!}\lambda^{k_{1}-i+1}b_{i} & \sum_{i=1}^{n}\frac{k_{2}!}{(i-1)!(k_{2}-i+1)!}\lambda^{k_{2}-i+1}b_{i} & \cdots & \sum_{i=1}^{n}\frac{k_{n}!}{(i-1)!(k_{n}-i+1)!}\lambda^{k_{n}-i+1}b_{i}\\ \vdots & \vdots & \cdots & \vdots\\ \lambda^{k_{1}}b_{n-1}+k_{1}\lambda^{k_{1}-1}b_{n} & \lambda^{k_{2}}b_{n-1}+k_{2}\lambda^{k_{2}-1}b_{n} & \ddots & \lambda^{k_{n}}b_{n-1}+k_{n}\lambda^{k_{n}-1}b_{n}\\ \lambda^{k_{1}}b_{n} & \lambda^{k_{2}}b_{n} & \cdots & \lambda^{k_{n}}b_{n} \end{array}\right]\right)$


      $=\mathrm{det}\left(\left[\begin{array}{cccc} \frac{k_{1}!}{(n-1)!(k_{1}-n+1)!}\lambda^{k_{1}-n+1}b_{n} & \frac{k_{2}!}{(n-1)!(k_{2}-n+1)!}\lambda^{k_{2}-n+1}b_{n} & \cdots & \frac{k_{n}!}{(n-1)!(k_{1}-n+1)!}\lambda^{k_{n}-n+1}b_{n}\\ \vdots & \vdots & \cdots & \vdots\\ k_{1}\lambda^{k_{1}-1}b_{n} & k_{2}\lambda^{k_{2}-1}b_{n} & \ddots & k_{n}\lambda^{k_{n}-1}b_{n}\\ \lambda^{k_{1}}b_{n} & \lambda^{k_{2}}b_{n} & \cdots & \lambda^{k_{n}}b_{n} \end{array}\right]\right)$

      $=(-1)^{n-1}\left(\prod_{j=1}^{n}\frac{1}{(n-j)!}\right)\lambda^{\sum_{j=1}^{n}k_{j}-n(n-1)/2}b_{n}^{n}\prod_{1\leq i




https://blog.sciencenet.cn/blog-3343777-1079694.html

上一篇:有实重根的线性系统的能达丰富性(1)
下一篇:关于类范德蒙矩阵的行列式值的符号的另一简化证明
收藏 IP: 27.17.75.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-26 10:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部