||
2阶带复根的SISO线性连续系统的能达域边界计算
已有研究指出在单位输入变量 $\left(\left\Vert u_{t}\right\Vert _{\infty}\leq1,\forall t\right)$ 约束下线性连续时间系统的能达域的定义为
$R_{x}=\left\{ z\left|z=\int_{0}^{T}e^{At}Bu_{t}\textrm{d}t,\left\Vert u_{t}\right\Vert _{\infty}\leq1\right.\right\}$
且该能达域的边界为
$\partial R_{x}=\left\{ z\left|z=\int_{0}^{T}e^{At}B\textrm{sgn(}c^{T}e^{At}B)\textrm{d}t,\forall c\in R^{n}\right.\right\}$
对2阶带复根的SISO线性连续系统 $\Sigma(A,B)$ ,设其系统矩阵和输入矩阵为(或可转换为)
$A=\left[\begin{array}{cc}
\sigma & \mu\\
-\mu & \sigma
\end{array}\right]=\rho_{A}\left[\begin{array}{cc}
\cos\theta & \sin\theta\\
-\sin\theta & \cos\theta
\end{array}\right]$
$B=\left[\begin{array}{c}
b_{1}\\
b_{2}
\end{array}\right]=\rho_{B}\left[\begin{array}{c}
\cos\delta\\
\sin\delta
\end{array}\right]$
其中
$\rho_{B}=\left(b_{1}^{2}+b_{2}^{2}\right)^{1/2},\quad\delta=\arctan\frac{b_{2}}{b_{1}}\in(-\pi,\pi]$
$\rho_{A}=\textrm{sgn}(\sigma)\left(\sigma^{2}+\mu^{2}\right)^{1/2},\quad\theta=\arctan\frac{\mu}{\sigma}\in[0,\pi)$
则有
$\partial R_{x}=\left\{ z\left|z=\int_{0}^{T}e^{At}B\textrm{sgn}\left(e^{\rho_{A}t}\cos(\mathit{\theta t}-\delta-\textbfsymbol{\phi})\right)\textrm{d}t,\forall\textbfsymbol{\textbfsymbol{\phi}}\in(-\pi,\pi]\right.\right\}$ (1)
对给定的 $\textbfsymbol{\phi}\in[-\pi,\pi]$ ,上式中的 $\textrm{sgn}\text{()}$ 函数的值发生变号的时间点为如下方程的解
$e^{\rho_{A}t}\cos(\mathit{\theta t}-\delta-\textbfsymbol{\phi})=0\quad\quad0
上述方程的解可能有多个,这取决于复根的虚部 $\theta$ 代表的频率和积分时长 $T$ 。因此,若在 $[0,T]$ 时长内,对给定的 $\textbfsymbol{\phi}\in[-\pi,\pi]$ ,上式的解 $\tau_{i}$ 为
$\mathit{\tau_{i}}=s_{i}+\frac{\hat{\delta}+\pi/2}{\theta}\qquad i=1,2,\ldots,N$
$\mathit{s_{i}}=(i-1)\Delta\qquad i=1,2,\ldots,N$
$N\mathrm{=int}\left(\left|\frac{\mathit{\theta T}-\delta-\textbfsymbol{\phi}}{\pi}\right|\right)$
$\Delta=\frac{\pi}{\theta}$
$\hat{\delta}=\delta+\textbfsymbol{\phi}-q\pi,\qquad\hat{\delta}\in(-\pi/2,\pi/2],q$ 为整数
且有
$\cos(\theta s\mathit{_{i}}-\delta-\textbfsymbol{\phi})=(-1)^{i}\cos(\delta+\textbfsymbol{\phi}),\qquad i=0,1,2,\ldots,N$
则式(1)所描述的边界为
$\partial R_{x}(\phi) =\left\{ \pm z\left|z=\frac{\rho_{b}}{\sqrt{\rho_{A}^{2}+\theta^{2}}}\left(\left[\begin{array}{c} \cos(-\delta+\psi)\\ -\sin(-\delta+\psi) \end{array}\right]+(-1)^{1+q}\frac{2\left(1-e^{N\rho_{A}\varDelta}\right)e^{\rho_{A}\tau_{1}}}{1-e^{\rho_{A}\varDelta}}\left[\begin{array}{c} \sin(\phi+\psi)\\ \cos(\phi+\psi) \end{array}\right]\right.\right.\right.$
$\left.\left.+(-1)^{N}e^{\rho_{A}T}\left[\begin{array}{c}
-\cos(\mathit{\theta T}-\delta+\psi)\\
\sin(\mathit{\theta T}-\delta+\psi)
\end{array}\right]\right)\right\}$ (2)
where
$\tau_{0}=0,\qquad\tau_{N+1}=T$
$\psi=\arctan\frac{\rho_{A}}{\theta}$
当 $T\rightarrow\infty$ 且 $\sigma<0$ 时,式(2)所描述的边界为
$\partial R_{x}(\phi) =\left\{ \pm z\left|z=\frac{\rho_{b}}{\sqrt{\rho_{A}^{2}+\theta^{2}}}\left[\left[\begin{array}{c} \cos(-\delta+\psi)\\ -\sin(-\delta+\psi) \end{array}\right]+(-1)^{1+q}\frac{2e^{\rho_{A}\tau_{1}}}{1-e^{\rho_{A}\varDelta}}\left[\begin{array}{c} \sin(\phi+\psi)\\ \cos(\phi+\psi) \end{array}\right]\right]\right.\right\}$
$\textbfsymbol{\phi}\in[0,\pi)$
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-30 01:05
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社