||
The determinant computing of some special matrices
In the volume computing of some special geometry in $n$ -dimensions space, the determinant values of some special matrices are computed time and again. Because the computing methods for that does not been found, I have no choice to deduce these computing equations by myself. After the tedious deductions, the concise results was got as follows.
1.
$\det\left[\begin{array}{cccc}
\frac{1}{1-\lambda_{1}^{2}} & \frac{1}{1-\lambda_{1}\lambda_{2}} & \cdots & \frac{1}{1-\lambda_{1}\lambda_{n}}\\
\frac{1}{1-\lambda_{1}\lambda_{2}} & \frac{1}{1-\lambda_{2}^{2}} & \cdots & \frac{1}{1-\lambda_{2}\lambda_{n}}\\
\vdots & \vdots & \ddots & \vdots\\
\frac{1}{1-\lambda_{1}\lambda_{n}} & \frac{1}{1-\lambda_{2}\lambda_{n}} & \cdots & \frac{1}{1-\lambda_{n}^{2}}
\end{array}\right]=\left[\prod_{1\leq j_{1} 2. $\det\left[\begin{array}{cccc}
\frac{1}{2\lambda_{1}} & \frac{1}{\lambda_{1}+\lambda_{2}} & \cdots & \frac{1}{\lambda_{1}+\lambda_{n}}\\
\frac{1}{\lambda_{1}+\lambda_{2}} & \frac{1}{2\lambda_{2}} & \cdots & \frac{1}{\lambda_{2}+\lambda_{n}}\\
\vdots & \vdots & \ddots & \vdots\\
\frac{1}{\lambda_{1}+\lambda_{n}} & \frac{1}{\lambda_{2}+\lambda_{n}} & \cdots & \frac{1}{2\lambda_{n}}
\end{array}\right]=\left[\prod_{1\leq j_{1} 3. $\sum_{(k_{1},k_{2},\cdots,k_{n})\in\Omega_{0,\infty}^{n}}\det\left(\left[\begin{array}{cccc}
\lambda_{1}^{k_{1}} & \lambda_{1}^{k_{2}} & \cdots & \lambda_{1}^{k_{n}}\\
\lambda_{2}^{k_{1}} & \lambda_{2}^{k_{2}} & \cdots & \lambda_{2}^{k_{n}}\\
\vdots & \vdots & \ddots & \vdots\\
\lambda_{n}^{k_{1}} & \lambda_{n}^{k_{2}} & \cdots & \lambda_{n}^{k_{n}}
\end{array}\right]\right)=\left(\prod_{1\leq j_{1} where $\Omega_{0,\infty}^{n}$ is constituted by the all possible multi-tuple $(k_{1},k_{2},\cdots,k_{n})$ which elements are picked from the natural number set $\{0,1,2,\cdots\}$ and sorted by the values.
https://blog.sciencenet.cn/blog-3343777-1068886.html
上一篇:能观/能重构丰富性解读
下一篇:决定离散系统能观丰富性大小的主要因素
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 20:23
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社