zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

Reachable abundance of linear discrete-time systems

已有 1762 次阅读 2017-7-4 06:39 |个人分类:reachable abundance|系统分类:科研笔记

The reachable abundance of linear discrete-time systems


1. Definition of The Unit Reachable Region $$ of Linear Discrete-time Systems

[Definition 1]. The uint contrllable region $R_{r,N}$ is constituted by all the $N$ -th step state $x_{N}$ that can be reached from origin of the state space of the linear discre-time systems with the unit input energy $\left(\left\Vert u_{k}\right\Vert _{\infty}\leq1,k=0,1,\cdots,N-1\right)$ in the finite sampling steps $N$ .


2. Definition of The Reachable Abundance of Linear Discrete-time Systems

[Definition 2]. The reachable abundance of linear discrete-time systems is defined as the two-tuples $(r_{N},v_{r,N})$ , where $r_{N}$ and $v_{r,N}$ are the space dimension and the volume of the unit reachable region $R_{r,N}$ , respectively.  


3. The Computation of The Reachable Abundance of Linear Discrete-time Systems $\varSigma(A,B)$


3.1 $r_{N}=\mathrm{rank\;}P_{r,N}$

where $P_{r,N}=\left[B,AB,\cdots,A^{n*-1}B\right],\quad n*=\min\{n,N\}$


3.2 $v_{r,N}=\mathrm{Vol}(R_{r,N})$

where

      $R_{r,N}=\left\{ \left.x_{N}\right|x_{N}=P_{r,N}u_{0,N-1},\left\Vert u_{0,N-1}\right\Vert _{\infty}\leq1\right\}$

      $u_{0,N-1}=\left[u_{N-1}^{T},u_{N-2}^{T},\cdots,u_{0}^{T}\right]^{T}$


4. The Computation of The Volume of The polyhedron $R_{r,N}$

$\mathrm{Vol}(R_{r,N})=2^{r_{n}}V_{r_{n}}\left(C_{r_{n}}(P_{r,N})\right)$


where the definitions and computations of the volume function $V_{n}(\bullet)$ and the polyhedron $C_{n}(\bullet)$ are in the "The volume computing of a special polyhedron in n-dimensions space"


Some results are in my paper arXiv1705.08064(On Controllable Abundance Of Saturated-input Linear Discrete Systems)




https://blog.sciencenet.cn/blog-3343777-1064443.html

上一篇:Optimizing problem on controllable abundances for promoting
下一篇:单输入系统有限时间能控丰富性的一个估计
收藏 IP: 27.17.74.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-1 08:17

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部