蜗牛分享 http://blog.sciencenet.cn/u/babyann519

博文

圣诞生蛋快乐

已有 4923 次阅读 2011-12-24 17:33 |个人分类:科研工作|系统分类:论文交流| 复杂网络, 传播, 排序, SIR模型

携五人之力生蛋蛋一枚,特在圣诞之夜以示纪念!
 
蛋蛋名称:Identifying influential nodes in complex networks
蛋蛋编号:Physica A 391 (2012) 1777–1787
蛋蛋特征:提出一种局部的指标用以刻画网络节点的影响力。
 
Abstract:Identifying influential nodes that lead to faster and wider spreading in complex networks is of theoretical and practical significance. The degree centrality method is very simple but of little relevance. Global metrics such as betweenness centrality and closeness centrality can better identify influential nodes, but are incapable to be applied in large-scale networks due to the computational complexity. In order to design an effective ranking method, we proposed a semi-local centrality measure as a tradeoff between the low-relevant degree centrality and other time-consuming measures. We use the Susceptible–Infected–Recovered (SIR) model to evaluate the performance by using the spreading rate and the number of infected nodes. Simulations on four real networks show that our method can well identify influential nodes.


https://blog.sciencenet.cn/blog-329471-521631.html

上一篇:又一个1212生日快乐
下一篇:盘点2011年之十“最”
收藏 IP: 123.116.67.*| 热度|

6 许培扬 武夷山 吕喆 周涛 张欣 langmalee

该博文允许注册用户评论 请点击登录 评论 (14 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-22 09:08

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部