|
社交网络用户情绪传播与用户的空间距离和时间跨度有关,受到多种交互机制的影响。从多层网络的研究视角出发,提取大规模社交网络中情绪传播的时空特征,研究用户行为对情绪传播的影响,对预测情绪传播趋势具有实际意义。
情绪是一种复杂的心理体验。个体可以通过模仿其他个体的肢体动作或面部表情来传播情绪,同时情绪会受到各种非语言因素的影响。
多层社交网络中情绪传播呈现以下特征:
(1)社交网络用户情绪与用户的空间距离和时间跨度有关,需要从大规模网络数据中提取时空特征,进而预测情绪传播趋势;
(2)社交网络为用户提供了多种交互机制,使信息和情绪的传播更加便捷, 同时也对情绪传播产生了多维度的影响,有必要研究不同用户交互行为对情绪传播的影响;
(3)利用多层网络分析社交网络的结构和动力学特性, 可以突破传统单层网络分析的局限性。
本文主要贡献包括:
1) 提出一种基于社交网络多种交互行为的情绪传播模型,被称为ECM模型(Emotional Contagion Model)。利用该模型可以分析社交网络中情绪传播的过程与规律。研究发现:多层社交网络中中性情绪用户所占比例随时间逐渐增大,并且正向情绪与负向情绪比例始终接近。情绪传输率越大,用户情绪更容易受到其他用户的影响而发生变化。初始情绪越中立的用户,在演化过程中情绪波动越小,而初始情绪极性越大的用户情绪波动越大。
2) 通过实验对比了本文所提模型与其他情绪传播模型,包括:基于情绪的ESIS模型和独立级联模型,实验结果表明ECM模型对社交网络中情绪传播具有较好的预测效果。
社交网络中情绪传播分析及模型构建示意图
ECM模型的演化规律
情绪转换数随用户初始情绪与节点度乘积的变化
引用格式:熊熙, 乔少杰, 吴涛, 吴越, 韩楠, 张海清. 基于时空特征的社交网络情绪传播分析与预测模型. 自动化学报, 2018, 44(12): 2290-2299
链接:http://html.rhhz.net/ZDHXBZWB/html/2018-12-2290.htm
作者简介:
熊熙,成都信息工程大学网络空间安全学院讲师。2013年获得四川大学信息安全专业博士学位。主要研究方向为web挖掘, 社会计算, 机器学习。E-mail: flyxiongxi@gmail.com
乔少杰,成都信息工程大学信息安全工程学院教授。2009年获得四川大学计算机学院工学博士学位。主要研究方向为:轨迹预测,移动对象数据库,大数据。本文通信作者。E-mail: sjqiao@cuit.edu.cn
吴涛,网络空间安全与信息法学院讲师。2017年获得电子科技大学计算机科学与工程学院博士学位。主要研究方向为数据挖掘。
吴越,西华大学计算机与软件工程学院副教授。2014年获得四川大学信息安全专业博士学位。主要研究方向为数据挖掘,复杂网络。
韩楠,成都信息工程大学管理学院讲师。2012年获得成都中医药大学博士学位。主要研究方向为数据挖掘。
张海清,成都信息工程大学软件工程学院副研究员。2015年获得法国里昂第二大学工学博士学位。主要研究方向为智能信息处理与知识工程。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-14 11:22
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社