|
引子 全息网 透明球 能量弦 纤维丛 证据链 无穷势 意识流 行为式 去中心 同理心 构造侧 跨临界 本真体 孪生体 暗向性 新生元 内生力 搜索力 推断力 传承力 创造力 大数据 大科学 量子化 精准性 动态性 非线性 可计算 随机性 可视化 深度学 无缝嵌 分布式 全维度(层次级联尺度规模过程形式) 仿生(泛化闭合确定稳定全真可预)度 图灵机 心安机 博弈论 数字化 智能化 标准化 元宇宙
分异分化 确界临界 跨界过界 结构功能 分区分层 分类分级 分时分量 梯度旋度 散度涡度 通道通量 测度算力 算子算法 自适应 控制流 欠拟合 过度适应
意向生态 思想实验 语法语义 数值计算 加减算子 链式算法 模型模拟 仿生仿真 完备确定 搜索闭合 状态控制 全息融通 智慧智能 表示论
符号主义 逻辑推理 数据驱动 机器挖掘 经验策略 强化学习
分异确界 结构功能 层次维度 尺度规模 分类区划
临界连通 通道途径 状态作用控制 过程形式
位涡守恒 梯度驱动 地形响应 旋转平衡
跨界过界 有效封闭 动态开放 动量质量能量 收支平衡 跨等密等压等势等涡
守恒 时空转换 尺度 析构 地形 梯度 涡度 波动 混合 非平衡 连通性 统计量
有序 限制 扩布 连通 交联 极端 特异 低联 同化 临界 规避 通量 梯度 物种 形态 分子 基因 向生 向上 向善 所想 传递 转化 意向 生态
关系 仿生 感知 理解 认知 虚实 交互(互化) 可预 可视 诊断 优化 决策 行动 规则 控制
全息文化之:属性+
全息意向之:范式+
全息仿生之:关系+
全息测度之:算子+
全息算法之:语义+
全息观测之:数据+
全息认知之:机理+
全息仿真之:可预+
全息成像之:可视+
全息体系之:智能+
全息评价之:可信+
全息思维之:智慧=全息系统科学
人 机 物 网
The holographic network and transparent sphere, more idealized conceptual models of holographic bionic simulation IN an intentional ecology with the context of Perceptible World differentiation and specialization
分异即为一切,一切皆因分异。
-----传转生息,分异合和,与合分之,由分合之,分技合术,无穷势末,造构可知,仿生仿真,不止善美,达智大慧
In complex science, the processing, transmission, and presentation of information are extremely crucial aspects. Holographic networks, with their powerful information processing capabilities and efficient transmission methods, provide strong support for research in complex science. For instance, in the modeling and simulation of complex systems, holographic networks can record, transmit, and present real-time dynamic change information of the system, aiding researchers in better understanding and analyzing system behavior. Transparent spheres are innovative products that integrate positioning, observation, reconnaissance, monitoring, and image transmission. They are capable of conducting omnidirectional visual capture in complex environments, providing clear and coherent video footage. This capability holds great significance for fields such as environmental monitoring and disaster warning in complex science.
Earth system science is the discipline that studies the overall behavior of the Earth system, with its research object being the Earth system itself, which is an organic whole comprising the atmosphere, hydrosphere (including the cryosphere), geosphere (including the crust, mantle, and core), pedosphere, and biosphere (including humanity). Earth system science emphasizes the interactions and interconnections among these spheres, as well as the characteristics of the Earth system as a continuously evolving holistic dynamic system. It aims to understand the operational mechanisms of the Earth system, predict future changes, and regulate, control, and adjust human behavior in response to global environmental changes. By applying holographic technology to the observation and recording of the Earth system, a holographic network can be constructed to capture and record various information about the Earth system, including the structure, state, and change processes of each sphere. Such a holographic network will provide comprehensive, three-dimensional, and dynamic observational data of the Earth system, aiding in a deeper understanding and prediction of its behavior. The concept of a transparent sphere can be seen as a figurative metaphor for the observational targets of Earth system science. It refers to a model or system that can clearly and accurately reflect the internal structure and operational mechanisms of the Earth system. In this model, the various spheres, processes, and elements of the Earth system are presented with clarity, enabling people to intuitively understand the behavior of the Earth system as if observing a transparent sphere. In reality, with the continuous development of Earth observation technology, humans have been able to conduct increasingly in-depth and detailed observations of the Earth system through satellites, radars, remote sensing, and other means. These observational data provide an important foundation for constructing the transparent sphere. By integrating and analyzing these data, a more accurate understanding of the structure and operational mechanisms of the Earth system can be obtained, thereby predicting future trends of change. It should be noted that although the observational methods of Earth system science are increasingly advanced, they have not yet reached the level of holographic technology. Therefore, the concepts of holographic network and transparent sphere here are more idealized notions of holographic bionic simulation, used to describe the vision of comprehensive, three-dimensional, and dynamic observations of the Earth system. The development of Earth system science has promoted the conception and realization of holographic networks and transparent spheres. At the same time, holographic networks and transparent spheres provide Earth system science with more comprehensive, three-dimensional, and dynamic observational means and data support. Through continuous observations and research, they reveal the mysteries and laws of the Earth system, facilitating a deeper understanding, prediction of its behavior, and enhancing human perception and cognitive abilities regarding the Earth system. This provides scientific evidence and support for sustainable human development.
附记 人工智能背后的智慧
多尺度热动力过程与物质和能量收支平衡之盐度层化和温度梯度与台风
海洋引子: 盐度 旋转
围绕海洋物质和能量变化的配置状态(维持、重现、循环和平衡)、收支过程(吸积和耗散)和形式(传输、混合和扩散),开展多尺度海洋热动力学过程与海洋气候和环境生态效应及其风险区划工作。
河口堆积 沿岸输运 离岸输运 层化剪切不稳定 锋面 风 底边界 潮汐 波浪 界面混合 滞留时间 扩展输运 非旋转 层化条件 模式 理论 模型
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-22 00:18
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社