|||
——导读——
假如非平凡零点的实部是在0到1之间随机取值,那么它刚好取到1/2的概率应该等于0。黎曼却认为这个概率是100%!这件事如果是真的,就说明它一点都不随机,在这背后肯定有深刻的原因。人们已经计算了十万亿个非平凡零点,然后你猜怎么着?它们都躺在临界线上!
在前三期节目(文章见理解黎曼猜想(一)背景 | 袁岚峰、理解黎曼猜想(二)两个自然数互质的概率是多少? | 袁岚峰和理解黎曼猜想(三)你真的相信全体自然数的和等于-1/12吗? | 袁岚峰,视频见https://www.bilibili.com/video/av34580488、https://www.bilibili.com/video/av35082418和https://www.bilibili.com/video/av35623705)中,我们介绍了黎曼猜想的背景,即质数分布问题,以及研究质数分布的基本工具,即欧拉乘积公式。我们还说到,黎曼通过解析延拓,把欧拉ζ函数升级成了黎曼ζ函数。顺便说一句,令许多人惊愕万分的所谓“全体自然数的和等于-1/12”,其实不是字面上的意思,而是说黎曼ζ函数在自变量为-1时的取值等于-1/12。那么,黎曼具体做了些什么呢?