TickingClock的个人博客分享 http://blog.sciencenet.cn/u/TickingClock

博文

Current Biology:硝酸盐信号通过激活GA生物合成来促进植物生长

已有 812 次阅读 2021-10-11 14:40 |个人分类:每日摘要|系统分类:论文交流

Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins

第一作者Lucie Camut

第一单位斯特拉斯堡大学

第一通讯Patrick Achard


 Abstract 


背景回顾Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability


主要发现:Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors. 


结果1-硝酸盐-GA-DELLA:We show that nitrate reduces the abundance of DELLAs by increasing GA contents through activation of GA metabolism gene expression. 


结果2-DELLA突变体:Consistently, the growth restraint conferred by nitrate deficiency is partially rescued in global-DELLA mutant that lacks all DELLAs. 


结果3-硝酸盐促进的细胞增殖与伸长:At the cellular level, we show that nitrate enhances both cell proliferation and elongation in a DELLA-dependent and -independent manner, respectively. 


结论:Our findings establish a connection between nitrate and GA signaling pathways that allow plants to adapt their growth to nitrate availability.


 摘 要 


硝酸盐是作物的主要氮源之一,在植物的整个生命周期中,硝酸盐作为一种养分和关键信号分子,作用于基因表达、代谢和各种生长过程的协调。人们普遍认为,硝酸盐诱导的发育进程和植物激素的合成与运输相互配合,从而使得植物的结构能够更好地适应有效氮。本文中,作者报道了硝酸盐通过其信号转导途径促进拟南芥和小麦的生长,部分是通过调节受赤霉素GA调控的DELLA生长抑制子的积累。作者发现,硝酸盐通过激活GA代谢基因的表达,增加GA的含量,从而降低了DELLAs的丰度。与此一致,缺少所有DELLA的突变体能够部分拯救硝酸盐缺乏所带来的生长抑制。在细胞水平上,作者发现硝酸盐能够以DELLA依赖和非依赖性的方式,分别促进细胞的增殖和伸长。本文的研究结果建立了硝酸盐和GA信号转导通路之间的关联,这种联系使得植物的生长能够适应有效氮的供应


 通讯作者 

** Patrick Achard **


研究方向不同环境下植物GA响应生长的机制


doi: https://doi.org/10.1016/j.cub.2021.09.024


Journal: Current Biology

Published dateOctober 05, 2021



https://blog.sciencenet.cn/blog-3158122-1307560.html

上一篇:New Phytologist:植物凯氏带和木栓质在水分和溶质运输中的生理作用
下一篇:Current Biology:生长素依赖性的细胞骨架和细胞形状控制介导拟南芥胚胎中的分裂方向

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2021-12-3 21:54

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部