||
第一作者:Anindya Ganguly
第一单位:美国华盛顿大学
通讯作者:Ram Dixit day
Abstract
背景回顾:Cell wall assembly requires harmonized deposition of cellulose and matrix polysaccharides. Cortical microtubules orient the deposition of cellulose by guiding the trajectory of cellulose synthase complexes. Vesicles containing matrix polysaccharides are thought to be transported by the FRA1 kinesin to facilitate their secretion along cortical microtubules.
提出问题:The cortical microtubule cytoskeleton thus may provide a platform to coordinate the delivery of cellulose and matrix polysaccharides, but the underlying molecular mechanisms remain unknown.
结果:Here, we show that the tail region of the FRA1 kinesin physically interacts with CMU proteins that are important for the microtubule-dependent guidance of cellulose synthase complexes. Interaction with CMUs did not affect microtubule binding or motility of the FRA1 kinesin but differentially affected the protein levels and microtubule localization of CMU1 and CMU2, thus regulating the lateral stability of cortical microtubules. Phosphorylation of the FRA1 tail region inhibited binding to CMUs and consequently reversed the extent of cortical microtubule decoration by CMU1 and CMU2. Genetic experiments demonstrated the significance of this interaction to the growth and reproduction of Arabidopsis thaliana plants.
结论:We propose that modulation of CMU protein levels and microtubule localization by FRA1 provides a mechanism to stabilize the sites of deposition of both cellulose and matrix polysaccharides.
正常情况下,FRA1可以促进CMU1、抑制CMU2定位于皮层微管;但是在FRA1尾部区域被磷酸化后,其不能结合CMUs,导致CMU2更加多的定位于皮层微管。
摘 要
细胞壁组装需要纤维素和基质多糖沉积的协调一致。皮层微管通过指引纤维素合酶复合物的轨迹来控制纤维素沉积的方向。而包含着基质多糖的囊泡被认为是由FRA1驱动蛋白所转运的,促进其沿着皮层微管分泌。因此,皮层微管的细胞骨架提供了一个平台来协调纤维素和基质多糖的递送,但潜在的分子机制仍然未知。本文中,作者的研究显示FRA1驱动蛋白的尾部区域能够与CMU蛋白发生物理互作,而CMU蛋白对于微管依赖型的纤维素合酶复合物指引非常重要。与CMU蛋白的互作并不会改变FRA1驱动蛋白与微管的结合能力或本身的动力,但是会差异影响CMU1和CMU2蛋白水平和微管定位,从而调控皮层微管的横向稳定性。FRA1蛋白尾部的磷酸化会阻止其与CMU蛋白的互作,从而反转皮层微管上CMU1和CMU2的修饰程度。遗传试验显示该互作对于拟南芥的生长和生殖都非常重要。作者提出,通过FRA1蛋白调控CMU蛋白水平和微管定位提供了一个稳定纤维素和基质多糖沉积位点的机制。
通讯作者
**Ram Dixit**
研究方向:
植物细胞壁构建的分子机制。
doi: 10.1105/tpc.19.00700
Journal: Plant Cell
First Published: June 02, 2020
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 09:07
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社