||
[注:下文是群邮件的内容。]
《Galois theory》 H.E. p. 53 * * * ?? Corollary. Let t be a Galois resolvent, let t' be one of its conjugates, and let S be the corresponding substitution of the roots as in the previous corollary. ---- 令 t 为 Galois 预解,t' 为其任一共轭,S 为将 t-行 带到 t'-行的置换. . Let s be any other Galois resolvent of the same equation. ---- 令 s 为同一方程的任意其它 Galois 预解. . Then there is a conjugate s' of s such that S is equal to the substitution of the roots corresponding to s and s'. ---- 则存在 s 的共轭 s' 使得 S 等于将 s 带到 s' 的置换. . 评论:此引理是说,S (从而整个 Galois 群) 与 Galois 预解 的选择无关. . Proof. Since s is in K(a, b, c, ...), the extension of S defined in the preceding corollary applies to s. ---- 证: 首先 s 属于 K(a, b, c, ...),于是 S 的扩展可施加于 s. . Define s' to be S(s). ---- 定义 s' 为 S(s). . 评论:将要找的 s' 取作 S(s). . If H(x) is an irreducible polynomial of which s is a root,... ---- 若 H(x) 是不可约多项式,s 是它的根... . then application of S to H(s) = 0 gives H(s') = 0, so that s' is a conjugate of s. ---- 则施加 S 到 H(s) = 0 得 H(s') = 0,于是 s' 是 s 的共轭. . 评论:因 S 是自同构,S(H(s)) = H(S(s)) = H(s'). 而 S(0) = 0. 故 H(s') = 0. . Now if a = ψa(s), where ψa is a polynomial with coefficients in K, then application of S to both sides gives S(a) = ψa(Ss) = ψa(s'). ---- 若 a = ψa(s) 则 S 作用到该式两边,得 S(a) = ψa(Ss) = ψa(s'). . Similarly, S(b) = ψb(s'), S(c) = ψc(s'), ..., as was to be shown. ---- 对根 b, c, ... 亦可类推. 得证. . 证明的简记: ..............................H K(a, b, c, ...) ~ s ~ S ~ s' ............................ψr 1. s ∈ K(a, b, c, ...) ==> s':=S(s). 构造 2. H(s) = 0 ==> H(s') = 0. 共轭 3. Sψr(s) = ψr(s') 置换 . 小结:Galois 群 与 Galois 预解的选择无关. * * *?? |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-5 18:15
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社