||
[注:下文是群邮件的内容。标题是作者名字缩写及页码。]
《Galois theory》
H.E. p. 52
* * * 17:30
(略去一段)
.
Proposition 1. Let Ψ(U, V, W, ...) be a polynomial in n variables with coefficients in K.
---- 设立系数在 K 中的 n 元多项式 Ψ(U, V, W, ...).
.
Let Ψt' be the element of K(a, b, c,...) obtained by setting U = φa(t'), V = φb(t'), W = φc(t'), ... in Ψ.
---- 设 Ψt' 为 K(a, b, c, ...) 的元素,即对 Ψ 的变量取值 U = φa(t'), V = φb(t'), W = φc(t'), ... .
.
In other words, for U, V, W, ... one substitutes the arrangement of the roots given in the row of the above table (1) corresponding to t'.
---- 即 U, V, W, ... 替换为 阵列(1) 中 t' 对应的行.
注:按前文,阵列(1) 的诸行都是根的排列.
.
Similarly, let Ψt, Ψt'', Ψt''', ... be defined by substituting the corresponding row.
---- 类似地有 Ψt, Ψt'', Ψt''', ... .
.
Then Ψt is in K if and only if the elements Ψt, Ψt', Ψt''... are all equal.
---- 则 Ψt ∈K 当且仅当 Ψt, Ψt', Ψt'' 都相等.
.
Loosely speaking, Ψ(a, b, c, ...) is a known quantity if and only if it is invariant under all the substitutions of the Galois group.
---- 大略地说,Ψ(a, b, c, ...) 是已知量 <==> 它在 Galois 群下不变.
.
评论:整个命题就是最后一句话.
---- 前一句只是给出更精确的表述 (为此准备了前面几句).
.
Proof. Substitute U = φa(X), V = φb(X), W = φc(X),... in to obtain a polynomial Ψ*(X) with coefficients in K.
---- 用复合的办法把多元多项式 Ψ 转为一元多项式 Ψ*.
.
If Ψt is in K then Ψ*(X) - Ψt is a polynomial with coefficients in K of which t is a root.
---- 若 Ψt 在 K 中(?), 则 Ψ*(X) - Ψt 是系数在 K 中的多项式,且其根为 t.
.
By Lemma 1, G(X) divides Ψ*(X) - Ψt, and therefore t' is a root of this polynomial when t' is any root of G.
---- 由引理1,G(X) 整除 Ψ*(X) - Ψt,因此 G 的任何根 t' 都是此多项式的根.
(评论:引理1起到 “传输” 根的作用).
.
Thus Ψt' - Ψt = 0 and, since t' was arbitrary, Ψt', Ψt''... are all equal to Ψt.
---- 于是 Ψt' - Ψt = 0, 并且因 t' 是任意的,Ψt', Ψt'' 都等于 Ψt.
.
Conversely, if Ψt, Ψt', Ψt''... are all equal and if there are k of them then Ψt = 1/k [ Ψt+ Ψt' + Ψt'' + ... ] = 1/k [ Ψ*(t) + Ψ*(t') + Ψ*(t'') + ...].
---- 反之,若诸Psi 全相等,则其中任何一个都等于其余的平均.
.
This is a symmetric polynomial in the roots t, t', t'', ... of G(X) and can therefore be expressed in terms of the coefficients of G(X).
---- 这是 G 的根 t, t', t'',... 的对称多项式,因此(?)可表达为 G 的系数.
.
Since these coefficients are in K, it follows that Ψt is in K, as was to be shown.
---- 由于这些系数在 K 中,则 Ψt 在 K 中,得证.
.
评论:技巧在于引入多元多项式,以及相应的复合构造 (即代入Galois群的诸行并看作多项式).
.
小结:给出了命题1及证明(留了两个疑问).
* * *21:30
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-5 17:36
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社