Step7. 第二段 (逐句评论).
Applying Proposition 5.5, there is a natural number p depending only on d, r, eps such that T can be obtained by a sequence of centre blowups ν: U = Xl --> ... --> X0 = X, torodidal with respect to (X, Λ), and length l ≤ p.
---- 从Step4 到 Step7第一段是做准备.
---- “修改” B 及有关条件,向命题5.5靠拢.
---- 此句仅是调用命题5.5的结论.
.
Arguing similar to the last paragraph, we can replace X with X1, hence drop the length of the sequence by 1.
---- 实施类似第一段的手续,能够用 X1 替换 X.
.
If the centre of T is still a closed point, we repeat the process.
---- 实施上述手续的“动力”是T的中心为闭点.
.
If not, we use Step 1.
---- 若非闭,则T 在 ν*L 的系数存在上界.
.
Therefore, eventually we find a natural number q depending only on d, r, eps, p such that μTν*L ≤ q.
---- 从上下文看,经过有限次的前述手续,最终归约为 Step1 的情形. (唯一的疑问是,为何 q 非要取为自然数? 或等号何时成立?)
.
Thus μTν*L ≤ q if we replace ν with any other resolution on which T is a divisor.
---- 似乎调用了已有结果(?).
.
小结:命题5.7的证明读写完毕.
---- 此证明体现出一种风格或方法.
---- 从一个点的假设启动、并展开证明.
(可简称为“点假设”方法).