||
This is an in-mail from TYUST.
新入の者--> What is going on ? (redirected)
本期开始改变画风,搭载数学类学院等有用链接。
今日学院:数学科学学院(南开大学)。新闻。(New 数学专业-大学参考 1 2 3)。
.
如何对付较长的证明?
(接上回Q) Step 1, 第二段。
Assume (X, S) is not plt. By Lemma 2.7, there is a projective birational morphism Y --> X contracting a single prime divisor T such that (Y, T) is plt, -(KY + T) is ample over X, and a(T, X, S) = 0. In particular, T is mapped into S, and if KY + BY is the pullback of Kx + B, then T is a component of \BY/.
评论:对于“非plt” 的 (X, S) ,构造出它的 “plt 像”(?)。
---- 当前的定理1.7的主副配置,刚好是引理2.7的条件(见下方温习)。
---- 除了绿色字体部分,完全是重述引理2.7的后果和 plt blowup 的定义。
.
小结:第二段的落点在 “(Y, T) is plt”,与“ (X, S) is not plt”相呼应。其中的方法可命名为“奇幻 plt blowup 方法”。不难预料,第三段将把第一段的 S-plt-Γ方法 套用到 (Y, T) 上去。
* * *
小感悟:凡是出现两次以上的事物,都可以看做“方法”。
* * *
温习*:Lemma 2.7. Assume (X, B) is an lc pair such that (X, 0) is Q-factorial klt. Then X has a plt blowup Y such that T is a component of \BY/ where KY + BY is the pullback of phi*(KX + B).
---- 主配置:(X,B) is lc;
---- 副配置:(X,0) is Q-factorial klt; (简记:Q-klt)
(注:主、副配置可合称为“奇幻配对”)
---- 结果1:存在plt blowup Y;
---- 结果2:存在T 作为 \BY/的分量;
---- 结果3:KY + BY 是 phi*(Kx +B) 的“pullback”.
(注:phi* 经常省略不写)
评论:“plt blowup”存在的充分条件及相应构造。
---- 引理的条件是“奇幻配对”。
---- 解释了定理1.7的主、副配置的来源及用意。
.
温习*:2.6. Plt blowups. Let X be a variety. A plt blowup of X is a variety Y equipped with a projective birational morphism phi: Y --> X contractiong a single prime divisor T such that -(KY + T) is ample over X and (Y, T) is plt [27, Definition 3.5].
若存在 Y 并具备如下
---- 主配置:pb态射 phi: Y --> X
(注:Y --> X 前面的“phi”常省略不写)
---- 副配置:压缩 T ~ single prime divisor
---- 结果:(Y, T) ~ plt
---- 附加:-(KY +T) ~ ample (over X)
简记:
-(KY +T) <~ (Y, T) ~ plt
ample ↓
X
注:文中经常从 X “出发”,建立“后退式”映射。
---- 映射的箭头指向 X。
* * *
*
第一轮读写链接(按目录顺序)
Abstract 8/4
Introduction
Boundedness of singular Fano varieties (1) 8/5
Boundedness of singular Fano varieties (2) 8/6
Boundedness of singular Fano varieties (3) 8/7
Boundedness of singular Fano varieties (4) 8/8
Boundedness of singular Fano varieties (5) 8/9
Boundedness of singular Fano varieties (6) 8/9
Jordan property of Cremona groups 8/10
Lc thresholds of lR-linear systems 8/11
Lc thresholds of anti-log canonical systems of Fano pairs (1) 8/12
Lc thresholds of anti-log canonical systems of Fano pairs (2) 8/13
Lc thresholds of R-linear systems with bounded degree 8/14
Complements near a divisor 8/15
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-13 14:47
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社