||
本期开始加开窗口,推出科学网特色博主,有用链接等。
继续探究 normal variety 的概念。摘录昨天笔记的开头:
normal variety*: In algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain.
评论:此解释说,variety是normal的,是指它在每个点normal的。这使我想起实变函数里的“开集”,也是从每个点服从的规则来定义的。
加评:X在每个点是normal的,是指在每个点处的 local ring 是个 integrally closed domain. (variety里头的每个点处,总是有个local ring,这似乎很有兴味)。
.
新的考虑:不深入到其它两个概念,直接理解:在每个点normal,意味着“均一性”、“同质性”,在某方面“处处平等”,给人以“平坦”的印象。至于这样定义的用途,就只能到上下文里去考察了。(“均一性”可视为某种“不变性”)。
疑问1:可否引入其它形式的normal?(即把 local ring 替换成其它事物,并赋予类似的均一性)。
疑问2:任何variety的每个点处都存在local ring吗?(定义里有这样的暗示,但感到不能想当然。不能定义里默认地假定了每个点处local ring的存在性)
.
又及:local ring 似乎具有基本的重要性,值得了解*。(以下接续昨天local ring部分的笔记)。
In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal.
评论:提及的“localization of a ring”很有兴味:怎么还要把“环”局部化?
.
可能有用的结论*。
A ring R is a local ring if it has any one of the following equivalent properties:
R has a unique maximal right ideal.
1 ≠ 0 and the sum of any two non-units in R is a non-unit.
1 ≠ 0 and if x is any element of R, then x or 1 − x is a unit.
If a finite sum is a unit, then it has a term that is a unit (this says in particular that the empty sum cannot be a unit, so it implies 1 ≠ 0).
评论:上述第4、5条性质很奇特。(若任何variety的每个点处都存在local ring,则variety本身也显得奇特了)。
.
小结:normal variety 暂时探究到这里。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 09:35
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社