[1] J. Scott, Social Network Analysis: A Handbook[M], Sage Publications, London, 2000.
[2] Z. Dezsö, A.-L. Barabási, Halting viruses in scale-free networks[J], Phys. Rev. E, 2002, 65:055103.
[3] S. P. Borgatti, A. J. Mehra, D. J. Brass, G. Labianca, Network Analysis in the Social Sciences[J], Science,2009, 323(5916): 892-895.
[4] A.-L. Barabási, Linked: the new science of networks[M], Perseus, Cambridge, 2002.
[5] D. J. Watts, Small Worlds[M], Princeton University Press, Princeton, 1999.
[6] M. Girvan, M. E. J. Newman, Community structure in social and biological networks[J], PNAS, 2001,99(12):7821-7826.
[7] D. G. Myers, Social Psychology[M], The McGraw2Hill Companies, New York, 2005.
[8] A. F. Rozenfeld, R. Cohen, D. Ben-Avraham, S. Havlin, Scale-Free Networks on Lattices[J], Phys. Rev. Lett. 2002, 89:218701.
[9] X.-J. Xu, W.-X. Wang, T. Zhou, G.-R. Chen, Geographical Effects on Epidemic Spreading in Scale-Free Networks[J], Int. J. Mod. Phys. C, 2006, 17(12):1815-1822.
[10] X. Li, G.-R. Chen, A local world evolving network model[J], Physica A,2003, 328(1-2):274-286.
[11] C. Li, P. K. Maini, An evolving network model with community structure[J], J. Phys. A: Math. Gen. , 2005, 38(45): 9741-9749.
[12] L.-N. Wang, J.-L. Guo, H.-X. Yang, T. Zhou, Local preferential attachment model for hierarchical networks[J], Physica A, 2009, 388(8):1713-1720.
[13] S. S. Manna, P. Sen, Modulated scale-free network in Euclidean space[J], Phys. Rev. E, 2002, 66 (6): 066114.
[14] D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel[J], Nature, 2006, 439 : 462-465.
[15] M. C. González, C. A. Hidalgo, A.-L. Barabási, Understanding individual human mobility patterns[J], Nature , 2008, 453:779-782.
[16] Y. Xia, C. K. Tse, W. M. Tam, F. C. M. Lau, M. Small, Scale-free user-network approach to telephone network traffic analysis[J], Phys. Rev. E,2005, 72(2): 026116.
[17] J.-P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, A.-L. Barabasi, Structure and tie strengths in mobile communication networks[J], PNAS,2007, 104(18):7332-7336.
[18] H. Ebel, L.-I. Mielsch, S. Bornholdt, Scale-free topology of e-mail networks[J], Phys. Rev. E, 2002, 66(3): 035103.
[19] J.-P. Eckmann, E. Moses, D. Sergi, Entropy of dialogues creates coherent structures in e-mail traffic[J], PNAS,2004, 101(40):14333-143337.
[20] R. Smith, Instant messaging as a scale-free network[OL], arXiv: cond-mat/0206378.
[21] F. Wang, Y. Moreno, Y. Sun, The structure of peer-to-peer social networks[J], Phys. Rev. E, 2006, 73(3): 036123.
[22] K.-I. Goh, Y.-H. Eom, H. Jeong, B. Kahng, D. Kim, Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions[J], Phys. Rev. E, 2006, 73(6): 066123.
[23] J. Zhang, M. S. Ackerman, L. A. Adamic, Expertise networks in online communities: structure and algorithms[C], Proc. 16th Intl. Conf. WWW, pp. 221-230, ACM Press, New York, 2007.
[24] S. Golder, D. Wilkinson, B. Huberman, Rhythms of social interaction: messaging within a massive online network[C], Proc. 3rd Commun. Technol. Conf., pp. 41-66, Springer, 2007.
[25] R. I. M. Dunbar, Coevolution of neocortical size, group size and language in humans[J], Behavioral and Brain Sciences, 1993,16(4): 681-735.
[26] Y. Y. Ahn, S. Han, H. Kwak, S. Moon, H. Jeong, Analysis of topological characteristics of huge online social networking services[C], Proc. 16th Intl. Conf. WWW, pp. 835-844, ACM Press, New York, 2007.
[27] K. Yuta, N. Ono, Y. Fujiwara, A gap in the community-size distribution of a large-scale social networking site[OL], arXiv: physics/0701168.
[28] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks[C], Proc. 7th ACM SIGCOMM Conf., pp. 29-42, ACM Press, New York, 2007.
[29] E. Spertus, M. Sahami, O. Buyukkokten, Evaluating similarity measures: a large-scale study in the orkut social network[C], Proc. 11st ACM SIGKDD, pp. 678-684, ACM Press, New York, 2005.
[30] G. Csanyi, B. Szendri, Structure of a large social network[J], Phys. Rev. E,2004, 69(3):036131.
[31] P. Zakharov, Thermodynamics approach for community discovering within the complex networks: LiveJournal study[OL], arXiv: physics/0602063.
[32] L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, and evolution[C], Proc. 12nd ACM SIGKDD, pp. 44-54, ACM Press, New York, 2006.
[33] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins, Geographic routing in social networks[J], PNAS, 2005, 102 (33): 11623-11628.
[34] R. Kumar, J. Novak, P. Raghavan, A. Tomkins, On the bursty evolution of blogspace[C], Proc. 12nd Intl. Conf. WWW, pp. 568-576, ACM Press, New York, 2003.
[35] Y. Chi, S. Zhu, X. Song, J. Tatemura, B. L. Tseng, Structural and temporal analysis of the blogosphere through community factorization[C], Proc. 13rd ACM SIGKDD, pp. 163-172, ACM Press, New York, 2007.
[36] K. Lerman, Social information processing in news aggregation[J], IEEE Internet Computing, 2007, 11(6):16-28.
[37] E. Santos-Neto, M. Ripeanu, A. Iamnitchi, Tracking user attention in collaborative tagging communities[C], Proc. Workshop on Contextualized Attention Metadata, ACM Press, 2007.
[38] C. Cattuto, C. Schmitz, A. Baldassarri, V. D. P. Servedio, V. Loreto, A. Hotho, M. Grahl, G. Stumme, Network properties of folksonomies[J], AI Commun. , 2007, 20(4):245-262.
[39] P. Holme, C. R. Edling, F. Liljeros, Structure and time evolution of an Internet dating community[J], Social Networks, 2004, 26(2): 155-174.
[40] M. E. J. Newman, Assortative mixing in networks[J], Phys. Rev. Lett. 2002, 89(20): 208701.
[41] H.-B. Hu, X.-F. Wang, Evolution of a large online social network[J], Phys. Lett. A , 2009, 373(12-13):1105-1110.
[42] G. Kossinets, D. J. Watts, Empirical Analysis of an Evolving Social Network[J], Science, 2006, 311(5757):88-90.
[43] G. Palls, A.-L. Barabási, T. Vicsek, Quantifying social group evolution[J], Nature, 2007, 446:664-667.
[44] J. Whitfield, Group Theory[J], Nature Digest, 2008, 5:12-17.
[45] R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks[C], Proc. 12nd ACM SIGKDD, pp. 611-617, ACM Press, New York, 2006.
[46] J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: densification and shrinking diameters[J], ACM Trans. Knowl. Discovery Data, 2007,1(1):1-41.
[47] B. Skyrms, R. Pemantle, A dynamic model of social network formation[J],PNAS 2000, 97(16):9340-9346
[48] M. E. J. Newman, D. J. Watts, S. H. Strogatz, Random graph models of social networks[J], PNAS, 2002, 99: 2566-2572.
[49] M. E. J. Newman, J. Park, Why social networks are different from other types of networks[J], Phys. Rev. E, 2003, 68(3): 036122.
[50] P. Mika, Ontologies are us: A unified model of social networks and semantics[C], Web Semantics: Science, Services and Agents on the WWW 5 (2007) 5.
[51] W. M. Tam, F. C. M. Lau, C. K. Tse, Complex-Network Modeling of a Call Network[J], IEEE Trans. Circuits Syst. I, , 2009, 56(2) :416-429.
[52] R. M. Anderson, R. M. May, Infectious Diseases of Humans[M], Oxford, Oxford University Press, 1991.
[53] P. Grassberger, On the critical behavior of the general epidemic process and dynamical percolation[J], Math. Biosci.,1983, 63(2):157-172.
[54] M. E. J. Newman, S. H. Strogatz, D. J. Watts, Random graphs with arbitrary degree distribution and their applications[J], Phys. Rev. E, 2001, 64(2): 026118.
[55] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks[J], Phys. Rev. Lett., 2001, 86(14): 3200-3203.
[ Zhou T, Fu ZQ, Niu YW et al, Survey on the transmission dynamics in complex networks[J], Progress in natural science, 2005,15(5):513-523].
[57] C. Moore, M. E. J. Newman, Epidemics and percolation in small-world networks[J], Phys. Rev. E, 2000, 61(5): 5678-5682.
[58] A. Cliff, P. Haggett, Island Epidemics[J], Sci. Am. 1984, 250(5) :138.
[59] A. Tohamsen, A simple model of recurrent epidemics[J], J. Theor. Biol., 1996, 178(1):45-51.
[60] M. Kuperman, G. Abramson, Small-World Effect in an Epidemiological Model[J], Phys. Rev. Lett.,2001, 86(13):2909-2912.
[61] S.-J. Xiong, Dynamics and asymptotical behavior of spreading processes in a closed system[J], Phys. Rev. E , 2004, 69(6):066102.
[62] T. Verdasca, M. M. T. da Gama, A. Nunes, N. R. Bernardino, J. M. Pacheco, M. C. Gomes, Recurrent epidemics in small world networks[J], J. Theor. Biol., 2005, 233(4):553-561.
[63] J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models[M], Cambridge University Press, Cambridge, 1999.
[64] R. Pastor-Satorras R, A. Vespignani, Epidemic dynamics and endemic states in complex networks[J], Phys. Rev. E, 2001, 63(6) :066117.
[65] R. M. May, A. L. Lloyd, Infection dynamics on scale-free networks[J], Phys. Rev. E., 2001, 64(6): 066112.
[66] D. Volchenkov, L. Volchenkova, Ph. Blanchard, Epidemic Spreading in a variety of scale free networks[J], Phys. Rev. E., 2002,66(4): 046137.
[67] Y. Moreno, A. Vazquez, Disease spreading in structured scale-free networks[J], Eur. Phys. J. B., 2003,31(2): 265-271.
[68] M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks[J], Phys. Rev. Lett., 2004,92(17): 178701.
[69] M. Barthélemy, A. Barrat A, R. Pastor-Satorras, A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks[J], J. Theor. Biol., 2005, 235(2): 275-288.
[70] Z. Liu, B. Hu, Epidemic spreading in community network[J]s, Europhys. Lett. , 2005, 72(2): 315.
[71] X.-Y. Wu, Z. Liu, How community structure influences epidemic spread in social network[J], Physica A, 2008, 387(2-3):623-630.
[72] W. Huang, C. Li, Epidemic spreading in scale-free networks with community structure[J], J. Stat. Mech. 2007, P01014.
[73] G. Yan, Z.-Q. Fu, J. Ren, W.-X. Wang, Collective synchronization induced by epidemic dynamics on complex networks with communities[J], Phys. Rev. E., 2007,75(1): 016108.
[74] H. Zhao, Z.-Y. Gao, Modular effects on epidemic dynamics in small-world networks[J], Europhys. Lett. , 2007, 79(3): 38002.
[75] S. Gonçalves, M. Kuperman, M F da C Gomes, Promiscuity and the evolution of sexually transmitted diseases[J], Physica A, 2003, 327(1-2): 6-11.
[76] S. Gonçalves, M. Kuperman, The social behavior and the evolution of sexually transmitted diseases[J], Physica A , 2003,328: 225(1-2)-232.
[77] S. Gonçalves, M. Kuperman, M F da C Gomes, A social model for the evolution of sexually transmitted diseases[J], Physica A, 2004,342(1-2): 256-262.
[78] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, N. Wang, Modelling disease outbreaks in realistic urban social networks[J], Nature , 2004, 429:180-184.
[79] J.-Z. Liu, J.-S. Wu J S, Z.-R. Yang, The spread of infectious disease on complex networks with household-structure[J], Physica A, 2004, 341:273-280.
[80] D. F. Zheng, P. M. Hui, S. Trimper, B. Zheng, Epidemics and dimensionality in hierarchical networks[J], Physica A , 2005, 352(2-4):659-668.
[81] A. Grabowski, R. A. Kosiński, The SIS model of epidemic spreading in a hierarchical social network[J], Acta Physica Polonica B, 2005, 36(5):1579-1593.
[82] J. Joo, J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation[J], Phys. Rev. E, 2004, 69(6): 066105.
[83] R. Olinky, L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission[J], Phys. Rev. E, 2004, 70(3): 030902.
[84] T. Zhou, J.-G. Liu, W.-J. Bai, G.-R. Chen, B.-H. Wang, Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity[J], Phys. Rev. E , 2006, 74(5):056109.
[85] R. Yang, B.-H. Wang, J. Ren, W.-J. Bai, Z.-W. Shi, W.-X. Wang, T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity[J], Phys. Lett. A, 2007, 364(3-4):189-193.
[86] R. Yang, T. Zhou, Y.-B. Xie, Y.-C. Lai, B.-H. Wang, Optimal contact process on complex networks[J], Phys. Rev. E , 2008, 78(6):066109.
[87] X.-J. Xu, X. Zhang, J. F. F. Mendes, Impacts of preference and geography on epidemic spreading[J], Phys. Rev. E, 2007, 76(5): 056109.
[88] J. Zhou, Z. Liu, Epidemic spreading in communities with mobile agents[J], Physica A, 2009, 388: 1228-1236.
[89] G. Yan, T. Zhou, J. Wang, Z.-Q. Fu, B.-H. Wang, Epidemic Spread in Weighted Scale-Free Networks[J], Chin. Phys. Lett., 2005, 22(2):510-513.
[90] M. Small, C.-K. Tse, Clustering model for transimission of the SARS virus: application to epidemic control and risk assessment[J], Physica A, 2005,351(2-4): 499-511.
[91] Y.-Z. Zhou, Z. Liu, J. Zhou, Periodic Wave of Epidemic Spreading in Community Networks[J], Chin. Phys. Lett., 2007, 24(2): 581-584.
[92] D. A. T. Cummings, R. A. Irizarry, N. E. Huang, et al, Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[J], Nature , 2004, 427: 344-347.
[93] R. Pastor-Satorras, A. Vespignani, Immunization of Complex Networks[J], Phys. Rev. E, 2002, 65(3): 036104.
[94] R. Cohen, S. Havlin, D. ben-Avraham, Efficient Immunization Strategies for Computer Networks and Populations[J], Phys.Rev. Lett. , 2003, 91(24): 247901.
[95] M. J. Tildesley, N. J. Savill, D.J. Shaw, et al, Optimal Reactive Vaccination Strategies for a Foot-and-mouth Outbreak in the UK[J], Nature , 2006, 440: 83-86.
[96] J. Goldenberg, Y. Shavitt, E. Shir, S. Solomon, Distributive immunization of networks against viruses using the ‘honey-pot’ architecture[J], Nat. Phys., 2005,1: 184-188.
[97] L. K. Gallos, F. Liljeros, P. Argyrakis, A. Bunde, S. Havlin, Improving immunization strategies[J], Phys. Rev. E, 2007, 75(4):045104.
[98] T. Gross, C. J. D. D’Lima, B. Blasius, Epidemic Dynamics on Adaptive Network[J], Phys. Rev. Lett., 2006, 96(20) :208701.
[99] X.-P. Han, Disease Spreading with Epidemic Alert on Small-world Networks[J], Phys. Lett. A , 2007, 365(1-2):1-5.
[100] K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community[J], Int. J. Mod. Phys. C, 2000,11(6): 1157-1165.
[101] A. J. Sudbury, The proportion of the population never hearing a rumour[J], J. Appl. Prob., 1985,22: 443-446.
[102] D. H. Zanette, Criticality behavior of propagation on small-world networks[J], Phys. Rev. E, 2001, 64(5): 050901.
[103] D. H. Zanette,Dynamics of rumor propagation on small-world networks[J], Phys. Rev. E, 2002,65(4): 041908.
[104] Y. Moreno, M. Nekovee, A. F. Pacheco, Dynamics of rumor spreading in complex networks[J], Phys. Rev. E , 2004, 69(6):066130.
[105] J. Zhou, Z. Liu, B. Li, Influence of network structure on rumor propagation[J], Phys. Lett. A, 2007,368: 458-463.
[106] H. Kesten, V. Sidoravicius, The spreading of a rumor or infection in a moving population[J], Annals Prob. , 2005,33(6): 2402-2462.
[Pan ZF, Wang XF, Li X. Variable-free network clustering coefficient of the rumors spread on the Simulation[J], Journal of System Simulation, 2006,18(8):2346-2348 ]
[Liu CH, Hu XF, Si GY, et al.Study on the consensus emergency model [J], Complex systems and complexity science, 2007,1: 24-27.
[109] P. Carpena, P. Bernaola-Galván, M. Hackenberg, A. V. Coronado, J. L. Oliver, Level statistics of words: Finding keywords in literary texts and symbolic sequences[J], Phys. Rev. E, 2009, 79(3): 035102.
[110] X. Yong, C.-G. Cao, D.-L. Zhang, A Formal Representation Model of Emotion Knowledge[C], Proc. 2nd Intl. Conf. Knowl. Economy & Develop. Sci. & Technol., pp. 310-316, 2004.
[111] J. Srivastava, R. Cooley, M. Deshpand, P.-N. Tan, Web Usage Mining:Discovery and Applications of Usage Patterns from Web Data[C], SIGKDD Exploration, pp.1-12, ACM SIGKDD, ACM Press, New York, 2000.
[112]R. Cooley, J Srivastava, Data preparation for mining world wide web browsing patterns[J], Knowl. & Inform. Syst. 1 (1999) 1
[113]. Zeng, F.Y., Gao, H.*, Fu, Y.: An Adaptive Method to Identify The Web Sensitive Information[C]. Proceedings of the 2009 International Symposium on Information Science and Engineering. Shanghai, China, 2009
[114] Gao H, Jiang J, She L, etc. A New Agglomerative Hierarchical Clustering Algorithm Implementation based on the Map Reduce Framework[J]. International Journal of Digital Content Technology and its Applications, 2010,4(3): 95-100.
[115]金兼斌.网络舆论的演变机制. [J]传媒. 2008,4:11-13
[ Jin JB. Mechanism of network evolution of public opinion. [J]Media. 2008,4:11-13 ]
[Zhang L, Liu Y, Study on the scale-free properties and decay model of the pubic opinion on Internet [J],Journal of Beijing jiaotong University,2008(2):,67-70.]
[117] C. R. Sunstein, Why Societies Need Dissent[M], Harvard University Press, 2003.
[118] Chen X, Gao H, Fu Yan. Situation analysis and prediction of web public sentiment[C]. International Symposium on Information Science and Engineering. 2008
[Fan WC, Scientific issues and comments on the national public emergency management [J],Bulletin of National Natural Science Foundation,2007,2:,71-76.]