|||
有学生问我一道题:设 $0<x_0<1,x_{n+1}=\sin x_n(n=1,2,\cdots)$, 求证$\lim\limits_{n\rightarrow \infty}\sqrt{n}x_n=\sqrt{3}$.
主要证明由我教研室同事王艳秋副教授提供。
证明:1、先证明$\lim\limits_{n\rightarrow \infty}x_n=0$.
因为当 $0<x_0<1$时,$x_{n+1}=\sin x_n<x_n(n=1,2,\cdots)$, 故$x_n$ 单调递减,且有下界0,故当$n\rightarrow \infty$时,$\{x_n\}$ 极限存在。
设 $\lim\limits_{n\rightarrow \infty} x_n = a$, 则有$\lim\limits_{n\rightarrow \infty} x_{n+1} = a$,由$\sin x$ 的连续性,对等式$x_{n+1}=\sin x_n$
两边取极限 $a =\sin a$, 所以 $a = 0$.
2、再证明 $\lim\limits_{n\rightarrow \infty}[\dfrac{1}{x_{n+1}^2}-\dfrac{1}{x_{n}^2}] = \dfrac{1}{3}.$
因为 $x_{n+1}^2 = (\sin x_n)^2 = \left(x_n-\dfrac{x_n^3}{6}+o(x_n^3)\right)^2$,
$$\dfrac{1}{x_{n+1}^2}-\dfrac{1}{x_{n}^2} = \dfrac{1}{(x_n-\dfrac{x_n^3}{6}+o(x_n^3))^2}-\dfrac{1}{x_{n}^2}$$
$$=\dfrac{x_n^2-(x_n-\dfrac{x_n^3}{6}+o(x_n^3))^2}{x_n^2(x_n-\dfrac{x_n^3}{6}+o(x_n^3))^2},$$
由等价无穷小,$\sin x\sim x,x\rightarrow 0$, 得$\sin x_n\sim x_n,n\rightarrow \infty$, 忽略高阶无穷小,可得
$$\lim\limits_{n\rightarrow \infty}[\dfrac{1}{x_{n+1}^2}-\dfrac{1}{x_{n}^2}]=\lim\limits_{n\rightarrow \infty}\dfrac{x_n^4/3}{x_n^4}=\dfrac{1}{3}.$$
3、由Stolz 定理,若数列 $\{b_n\}$ 极限存在, 且 $\lim\limits_{n\rightarrow \infty} b_n = b$ ,则 $\lim\limits_{n\rightarrow \infty}\dfrac{b_1+b_2+\cdots+b_n}{n}=b$.
令 $b_n = \dfrac{1}{x_{n}^2}-\dfrac{1}{x_{n-1}^2},n=1,2,\cdots.$, 则 $b_1+b_2+\cdots+b_n = \dfrac{1}{x_{n}^2}-\dfrac{1}{x_{0}^2}$, 故
$$\lim\limits_{n\rightarrow \infty}\dfrac{b_1+b_2+\cdots+b_n}{n}= \lim\limits_{n\rightarrow \infty}\dfrac{ \dfrac{1}{x_{n}^2}-\dfrac{1}{x_{0}^2}}{n}=b=\dfrac{1}{3}.$$
即$$\lim\limits_{n\rightarrow \infty}\dfrac{ \dfrac{1}{x_{n}^2}}{n}=b=\dfrac{1}{3},$$
亦即 $$\lim\limits_{n\rightarrow \infty}\sqrt{n}x_n=\sqrt{3}.$$
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-22 10:50
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社