|||
二十四、王台:《古典药物的科学化途径》
(一)内容简介
古典药物学的传统理论和临床应用仍然原封不动地保存在中国国内和世界各地的华人群体中,硕果仅存。因而出现了一个无法回避的问题:就是对于接近属于天然药物的中药学的科学化问题,也就是对于它们的应用进行科学验证问题,这是中药学求得生存和发展不得不逾越的一个门槛。任何药物,不论是天然的,还是人工的,它们的疗效、毒副作用,以及配伍禁忌都需要得到科学验证,也就是采用科学的临床实验方法和循证医学研究方法进行检验,而不能长此以往地仅仅凭借朴素理论的指导和懵懂经验的归纳在临床上进行医疗实践。
《古典药物的科学化途径》分为中外古典药物学著作比较、天然药物学的科学化历程、天然药物学的现状三章。
出版社:中国协和医科大学出版社
出版时间:2017-04-01
(二)目 录
第一章 中外古典药物学著作比较
总论 古罗马帝国也有一部《本草纲目》
一、李时珍的《本草纲目》被誉为“古代中国的百科全书”
二、古罗马帝国的《本草纲目》
三、《本草纲目》与《论药物》的比较
第一节 《论药物》第一册(共188种药物)
一、芳香类药物(Aromatics,共28种)
1.菖蒲(sedge):菖蒲属(Acorus)
2.肉桂、桂枝(cinnamon):月桂属(Laurus)
3.番红花(saffron):番红花属(Srocus)
4.小结
二、树脂类药物(Gums from trees,共68种)
1.没药(myrrh):没药属(Commiphora)
2.乳香脂(frankincense gum):乳香属(Boswellia)
3.小结
三、果树类药物(fruit trees,41种)
1.石榴(pomegranate):石榴属(Punica)
2.榅桲(quince):榅桲属(Cydonia)
3.小结
第二节 《论药物》第二册(共217种药物)
一、动物类药物(1iving creatures,106种药物)
1.海马(sea horse)
2.乌贼(cuttlefish)
3.蚯蚓(earthworms)
二、蔬菜类药物(vegetables,55种药物)
1.马齿苋(purslane):马齿苋属(Portulaca)
2.小结
三、辛辣性药物(herbs with sharp quality,39种药物)
1.大蒜(garlic):葱属(Allium)
2.胡椒(pepper):胡椒属(Piper)
3.小结
第三节 《论药物》第三册(共176种药物)
一、植物根部药物(Roots,9种药物)
1.大黄(rhubarb):大黄属(Rheum)
2.龙胆草(gentian):龙胆属(Gentiana)
3.甘草(liquorice):甘草属(Glycyrrhiza)
4.小结
二、多刺植物根部药物(Roots of prickly plants,167种药物)
1.欧当归(lovage):当归属(Angelica)
2.青蒿(wormwood):蒿属(Artemista)
3.薄荷(mint):薄荷属(Mentha)
4.欧洲防风(parsnip):白芷属(Heracleum)
5.藁本(1igusticum):藁本属(Ligusticum)
6.茴香(anise):茴芹属(Pimpinella)
7.前胡(hog's fennel):前胡属(Peudedanum)
8.大戟(spurge):大戟属(Euphorbia)
9.百合(1ily):百合属(Lilum)
10.款冬花(cohsfoot):款冬属(Tussilago)
11.小结
第四节 《论药物》第四册(其他草药和根部共195种药物)
1.瞿麦(pink):石竹属(Dianthus)
2.篇蓄(knotgrass):蓼属(Polygonum)
3.淫羊藿(barrenwort):淫羊藿属(Epimedium)
4.莨菪(henbane):莨菪属(Hyoscyamus)
5.乌头(aconite),乌头属(Aconitum)
6.丹参(sage),鼠尾草属(Salvia)
7.紫苑(aster),紫苑属(Aster)
8.藜芦(hellebore),藜芦属(Veratrum)
9.威灵仙(clematis),铁线莲属(Clematis)
10.小结
第五节 《论药物》第五册(矿石类药物100种药物)
1.代赭石(ochre)
2.朱砂(cinnabar)
3.矾石(明矾,alum)
4.硫磺(sulfur)
5.硝石(saltpetlle)
6.小结
本章小结
第二章 天然药物学的科学化历程
第一节 古典药物学著作的后续发展
一、《神农本草经》的后续发展
二、《论药物》的后续发展
(一)盖仑的《论单味药的性质和功用》
(二)欧洲中古黑暗时代的药物学
(三)阿拉伯学者的重大贡献:阿维森纳的《医典》
(四)意大利文艺复兴时代的药物学
第二节 从天然药物到人工药物的进展
一、化学对于药物学发展的推动
(一)化学的起源
(二)化学的革命
(三)天然药物的化学提纯
(四)有机化学合成药物代表药物学发展的新方向
二、生物学对于药物学发展的推动
(一)微生物学和免疫学的发展和抗菌药物的发明
(二)营养学的发展和维生素的发明
(三)内分泌学的发展和激素类药物的发明
(四)心血管病理生理学的发展和相关药物的发明
(五)癌症发病机制的研究进展和化疗药物的发明
三、生物技术制药对于药物学发展的推动
(一)重组DNA技术的发明和应用
(二)单克隆技术的发明和应用
第三节 天然药物科学研究的成就
一、麻黄素的提纯和研究
二、靛玉红治疗白血病
三、青蒿素治疗疟疾
四、三氧化二砷(砒霜)治疗白血病
五、芪苈强心胶囊治疗慢性心力衰竭
六、本章小结
第三章 天然药物学的现状
一、应用天然药物的补充医学和替代医学派别
二、三本近代天然药物学著作的比较
三、本章小结
参考资料
后记
三、作者简介
王台,1963年4月出生于河南省桐柏县,1985在河南师范大学获学士学位,1988年在武汉大学获硕士学位,1997年在中科院植物所获博士学位。1993至1994年和1997至1998年分别在东京大学和日本原子能研究所植物科学研究中心作访问学者。现任中科院植物分子生理学重点实验室副主任,中国科学院研究生院教授,国家植物基因研究中心(北京)项目科学家,中国植物生理学会细胞与发育生物学专业委员会副主任,中国生物化学与分子生物学会蛋白组学专业委员会委员,《植物学报》副主编、Frontier in Biology副主编,Asia Coordinator for International Plant Proteomics Organization(INPPO)。已培养硕士和博士14名;正在指导博士生和硕士生10名。
主要研究工作
1.花粉发育分子生理机制
利用功能蛋白质组和基因组学手段,结合细胞学、生理学等证据探讨水稻花粉减数分裂与花粉发育的机制,揭示遗传和表观遗传调控重要的蛋白质的功能。
2.种子发育分子生理机制
利用种子突变体,通过遗传、细胞和生理学研究探讨调控种子大小与形状的分子机制,结合功能蛋白质组分析,揭示相关的蛋白质网络。
主持和参加的科研项目:
[1]“水稻OsUBP1蛋白的生化特性与生理功能分析”,国家自然科学基金课题(批准号:30570147)(2006.1-2008.12),25万元,主持人。
[2] “水稻种子发育的蛋白组研究”,国家重大科学研究计划项目“重要组织和细胞的动态蛋白质组学研究” 课题(批准号:2006CB910105)(2006.10-2010.12),483万元,主持人。
[3] “水稻内质网、高尔基体与液泡功能蛋白质组研究”,中国科学院知识创新工程重要方向性项目 (批准号:KSCX2-YW-N-026)(2006.10-2009.12),100万元,首席科学家。
[4] “SAR基因的克隆与功能分析”,水稻863重大项目子课题(批准号:2006AA10A101)(2006.12-2010.10),75万元,主持人。
[5] “组蛋白甲基化修饰重要调控蛋白质的蛋白质组解析”,国家重大科学研究计划项目“植物表观遗传机制与重要调控蛋白质的功能和结构研究” 课题(批准号:2012CB910504)(2012.01-2015.12),350万元,主持人。
研究论文(注*为通讯作者)
2018
Liu LT, Lu YL, Wei LQ, Yu H, Cao YH, Li Y, Yang N, Song YY, Liang CZ, Wang T*. 2018. Transcriptomics analyses reveal the molecular roadmap and long non-coding RNA landscape of sperm cell lineage development.Plant J., 96: 421-437.
Han B, Yang N, Pu H, Wang T*. 2018. Quantitative proteomics and cytology of rice pollen sterol-rich membrane domains reveals pre-established cell polarity cues in mature pollen. J. Proteome Res., 17: 1532-1546.
2017
Yang N, Wang T*. 2017. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice. BMC Plant Biol., 17: 2.
Yang N, Han B, Wang T*. 2017. Protein isolation from plasma membrane, digestion and processing for strong cation exchange fractionation. Bio-protocol, 7: e2298.
Yang N, Han B, Liu L, Yang H, Wang T*. 2017. Plasma membrane preparation from Lilium davidii and Oryza sativa mature and germinated pollen. Bio-protocol, 7: e2297
2016
Liu LT, Zheng CH, Kuang BJ, Wei LQ, Yan LF, Wang T. 2016. Receptor-Like kinase RUPO interacts with potassium transporters to regulate pollen tube growth and integrity in rice. PLoS Genetics, doi:10.1371/journal.pgen.1006085
Yu HT, Wang T. 2016. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms. Frontiers in Plant Science, doi: 10.3389/fpls.2016.00707
Li Q, Deng ZY, Gong CY, Wang T. 2016. The rice eukaryotic translation initiation factor 3 subunit f (OseIF3f) is involved in microgametogenesis. Frontiers in Plant Science, doi: 10.3389/fpls.2016.00532
Yang H, Yang N, Wang T. 2016. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii. Plant Journal, 85: 660-674
2015
Lu YL, Wei LQ, Wang T. 2015. Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis. Frontiers in Plant Science, doi: 10.3389/fpls.2015.00391
Deng ZY*, Liu LT*, Li T, Yan S, Kuang BJ, Huang SJ, Yan CJ, Wang T. 2015. OsKinesin-13A is an active microtubule depolymerase involved in glume length regulation via affecting cell elongation. Scientific Reports, 5: 9457 (*Co-authors)
2014
Wang Zizhang, Xue Zhen, Wang Tai*. 2014. Differential analysis of proteomes and metabolomes reveals additively balanced networking for metabolism in maize heterosis. Journal of Proteome Research, 13(9): 3987-4001.
2013
Zhao X, Yang N and Wang T. 2013. Comparative proteomic analysis of generative and sperm cells reveals molecular characteristics associated with sperm development and function specialization. Journal of Proteome Research, 12: 5058-5078
Zhang X, Wei LQ, Wang ZZ and Wang T. 2013. Physiological and molecular features of puccinellia tenuiflora tolerating salt and alkaline-salt stress. Journal of Integrative Plant Biology, 55: 262–276
Deng ZY, Gong CY and Wang T. 2013. Use of proteomics to understand seed development in rice. Proteomics, 13: 1784–1800
Agrawal GK, Job D, Kieselbach T, Barkla BJ, Chen SX, Deswal R, Luthje S, Amalraj RS, Tanou G, Ndimba BK, Cramer R, Weckwerth W, Wienkoop S, Dunn MJ, Kim ST, Fukao Y, Yonekura M, Zolla L, Rohila JS, Waditee-Sirisattha R, Mas A, Wang T, Sarkar A, Agrawal R, Renaut J and Rakwal R. 2013. INPPO Actions and recognition as a driving force for progress in plant proteomics: change of guard, INPPO update, and upcoming activities. Proteomics, 13: 3093–3100
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla B J, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Roya JN, Farrant JM, Renaut J, Job D, Kikuchi S and Rakwal R. 2013. A decade of plant proteomics and mass spectrometry:Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, doi: 10.1002/mas
2012
Gong CY, Li Q, Yu HT, Wang ZZ and Wang T. 2012. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. Journal of Proteome Research, 11, 3019-3029
Zhang H, Han B, Wang T, Chen SX, Li HY, Zhang YH and Dai SJ. 2012. Mechanisms of plant salt response: insights from proteomics. Journal of Proteome Research, 11, 49-67
Yu HT, Xu SB, Zheng CH and Wang T. 2012. Comparative proteomic study reveals the involvement of diurnal cycle in cell division, enlargement, and starch accumulation in developing endosperm of Oryza sativa. Journal of Proteome Research, 11, 359–371
Wang ZZ, Yan SJ, Liu CM, Chen F and Wang T. 2012. Proteomic Analysis reveals an aflatoxin-triggered immune response in cotyledons of arachis hypogaea infected with Aspergillus flavus. Journal of Proteome Research, 11, 2739-2753
2011
Wei LQ, Yan LF and Wang T. 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biology,12, R53
An XJ, Deng ZY and Wang T. 2011. OsSpo11-4, a rice homologue of the archaeal TopVIA protein, mediates double-strand DNA cleavage and interacts with OsTopVIB. PLoS One, 6, e20327
Yu JJ, Chen SX, Zhao Q, Wang T, Yang CP, Diaz C, Sun GR and Dai CJ. 2011. Physiological and proteomic analysis of salinity tolerance in puccinellia tenuiflora. Journal of Proteome Research, 10, 3852–3870
Xu W, Yang R, Li M, Xing Z, Yang W, Chen G, Guo H, Gong X, Du Z, Zhang Z, Hu X, Wang D, Qian Q, Wang T, Su Z and Xue Y. 2011. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves. PloS One, 6, e17613
Wang ZZ and Wang T. 2011. Dynamic proteomic analysis reveals diurnal homeostasis of key pathways in rice leaves. Proteomics, 11:225-238
2010及以前
Han B, Chen S, Dai SJ, Yang N and Wang T. 2010. Isobaric Tags for Relative and Absolute Quantificationbased Comparative Proteomics Reveals the Features of Plasma Membrane-Associated Proteomes of Pollen Grains and Pollen Tubes from Lilium davidii. Journal of Integrative Plant Biology, 52: 1043–1058
Xu SB, Yu HT, Yan LF and Wang T. 2010. Integrated proteomic and cytological study of rice endosperms at the storage phase. Journal of Proteome Research, 9:4906-4918
Wei LQ, Xu WY, Deng ZY, Su Zhen, Xue Y and Wang T. 2010. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics, 11:338
Zhao LF, Hu YB, Chong K and Wang T. 2010. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany, 105:401-409
Li T, Gong CY and Wang T. 2010. RA68 is required for postmeiotic pollen development in Oryza sativa. Plant Molecular Biology, 72:265-277
Li T, Gong CY and Wang T. 2010. The rice light-regulated gene RA68 encodes a novel protein interacting with oxygen-evolving complex PsbO mature protein. Plant Molecular Biology Reporter, 28:136-143
Wang XN, Chen SX, Zhang H, Shi L, Cao FL, Guo LH, Xie YM, Wang T, Yan XF and Dai SJ. 2010. Desiccation tolerance mechanism in resurrection fern-ally selaginella tamariscina revealed by physiological and proteomic analysis. Journal of Proteome Research, 9: 6561–6577
Xu SB, Li T, Deng ZY, Chong K, Xue YB and Wang T. 2008. Dynamic Proteomic Analysis Reveals a Switch between Central Carbon Metabolism and Alcoholic Fermentation in Rice Filling Grains. Plant Physiology, 148:908-925
Hu YB, Chong K and Wang T. 2008. OsRAF is an ethylene responsive and root abundant factor gene of rice. Plant Growth Regulation, 54:55-61
Hu YB, Zhao LF, Chong K and Wang T. 2008. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. Journal of Plant Physiology, 165:1717-1725
Dai SJ, Wang T, Yan XF and Chen S. 2007. Proteomics of pollen development and germination. Journal of Proteome Research, 6:4556-4563
Dai XY, Xu YY, Ma QB, Xu WY, Wang T, Xue YB and Chong K. 2007. Overexpression of a R1R2R3 MYB Gene,OsMYB3R-2,Increases Tolerance to Freezing,Drought,and Salt Stress in Transgenic Arabidopsis. Plant Physiology, 143:1739-1751
Deng ZY and Wang T. 2007. OsDMC1 is required for homologous pairing in Oryza sativa. Plant Molecular Biology, 65, 31-42
Tao JY, Zhang LR, Chong K and Wang T. 2007. OsRAD21-3, an orthologue of yeast RAD21, is required forpollen development in Oryza sativa. The Plant Journal, 51:919-930
Dai SJ, Chen TT, Chong K, Xue YB, Liu SQ and Wang T. 2007. Proteomic identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Molecular & Cellular Proteomics, 6:207-230
Dai SJ, Li L, Chen T., Chong K, Xue YB and Wang T. 2006. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics, 6:2504-2529
Zhang LR, Tao JY, Wang SX, Chong K and Wang T. 2006. The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Molecular Biology, 60:533-554
Wang R, Chong K and Wang T. 2006. Divergence in spatial expression patterns and in response to stimuli of tandem-repeat paralogous encoding a novel class of proline-rich proteins in oryza sativa. Journal of Experimental Botany, 57:2887-2897
Zhao LF, Xu SB, Chai TY and Wang T. 2006. OsAP2-1, an AP2-like gene from Oryza sativa, is required for flower development and male fertility. Sexual Plant Reproduction, 19:197-206
Zhang LR, Tao JY and Wang T. 2004. Molecular characterization of OsRAD21-1, a rice homologue of yeast RAD21 essential for mitotic chromosome cohesion. Journal of Experimental Botany, 55: 1149-1152
Ding ZJ, Wu XH and Wang T. 2002. The rice tapetum-specific gene RA39 encodes a type I ribosome-inactivating protein. Sexual Plant Reproduction, 15: 205-212
Ding ZJ, Wang T,Chong K,Bai SN.2001.Isolation and characterization of OsDMC1, the rice homologue of the yeast DMC1 gene essential for meiosis. Sexual Plant Reproduction, 12: 285-288
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 06:49
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社