||
紧接上文:
Materials Studio官方教程:CASTEP——预测锗的热力学性质【1】
4、显示声子散射和态密度
声子散射曲线显示出声子能量沿着布里渊区高对称性方向对q向量的依赖性。此信息可以从单晶的中子散射实验中获得。只有为数不多的材料可以获得该信息,所以理论散射曲线有助于确定建模方法的有效性,以证明从头算方法的预测能力。在一定情形下,可测量态密度而不是声子散射。此外,在隧穿实验中可以直接测量与声子DOS直接相关的电子-声子相互作用函数。因此,能够从第一性原理计算声子DOS是很重要的。Materials Studio可以从任何.phonon CASTEP输出文件中产生声子散射图和态密度图。这些文件隐藏在Project Explorer里,但每个带有PhonDisp或PhonDOS后缀的.castep文件都会生成.phonon文件。
提示:在计算声子DOS时,仅使用Monkhorst-Pack网格上声子计算的结果。
现在,使用之前的计算结果创建声子散射图。
从菜单栏中选择Modules | CASTEP | Analysis,打开CASTEP Analysis对话框。从性质列表中选择Phonon dispersion。确定结果文件Results file选择框中显示的是Ge_PhononDisp.castep。
从单位Units下拉列表中选择cm-1,并从图像类型Graph style下拉列表中选择Line。
按下View按钮。
在结果文件夹中创建了一个新的图形文档Ge Phonon Dispersion.xcd。它应与下图相似:
声子散射的实验图如下所示:
预测的频率可从Ge_PhononDisp.castep文件中得到。
在Project Explorer中双击Ge_PhononDisp.castep。按下CRTL+F键,搜索Vibrational Frequencies。
即显示结果文件中的如下部分内容:
注意:由于起始模型的结构存在细微差异,因此得到的结果可能与所示结果略有不同。
每一个q点和每一个分支(纵向光学或声学(LO/LA)、横向光学或声学(TO/TA))的频率以cm-1为单位表示,同时也给出了q点在倒易空间中的位置。高对称性点Γ、L和X在倒易空间中的位置分别为(0 0 0)、(0.5 0.5 0.5)和(0.5 0 0.5)。
预测的频率和实验的频率(以cm-1为单位)如下:
总体来说,计算的精度是可以接受的。通过使用更密集的SCF k点网格进行计算,可以获得与实验结果更好的一致性。
现在创建声子态密度图。
从CASTEP Analysis对话框的性质列表中选择声子态密度Phonon density of states。使Ge.xsd为当前文档,并确定Results file 选择框中显示的是Ge_PhononDOS.castep。
将DOS display设置为Full。单击More...按钮,打开CASTEP Phonon DOS Analysis Options对话框。从插值方法Integration method下拉列表中选择插值Interpolation,将精度等级Accuracy level设置为Fine。单击OK按钮,在CASTEP Analysis对话框中单击View 按钮,创建了一个新的DOS图表。
选择插值方案以获得DOS的最佳表示;另一种设置是展宽smearing,生成的DOS细节过少。
创建了一个新的图表文件Ge Phonon DOS.xcd,它应当与下图相似:
5、显示热力学性质
在CASTEP中的声子计算可以用来评价准谐近似下晶体的焓、熵、自由能、晶格的热容对于温度的依赖性。可以用这些结果和实验数据(如热容的测量值)相比较,或用于预测结构经过不同修正后的相稳定性或相变。
所有与能量相关的性质均绘制在同一曲线图中,并包含了零点能的计算值。热容被单独绘制在图表文件的右侧。
注意:熵以TS乘积的形式表示,以便与焓进行比较。
现在使用声子计算的结果创建热力学性质图表。
在CASTEP Analysis对话框的性质列表中选择热力学性质Thermodynamic properties。使Ge.xsd为当前文档,确定Results file选择框中显示Ge_PhononDOS.castep文件。
勾选德拜温度Debye temperature复选框,单击View按钮。
在结果文件夹中创建了两个新的图表文件Ge Thermodynamic Properties.xcd和Ge Debye Temperature.xcd:
没有非谐性的实验结果(Flubacher et al., 1959)表明,在高温极限的Debye温度是395(3)K。模拟计算得到的Debye温度是396 K,与实验值相符。
总体来说,实验曲线和CASTEP得到的曲线非常相似。在25K左右有一个凹陷处,德拜温度的最低值为255K,这与CASTEP预测的结果完全一致。使用本教程中的计算设置,在非常低的温度下曲线的形状不够精确。需要对低频声学模式进行更好的采样,这可以通过在声子态密度计算中使用更精细的Monkhorst-Pack网格来实现。
6、显示原子位移参数
原子位移参数,也称为温度因子,可以通过声子计算来估计,并在可视化工具中以椭球状显示。
在CASTEP Analysis对话框的性质列表中选择热力学性质Thermodynamic properties。使Ge.xsd为当前文档,确定Results file选择框中显示Ge_PhononDOS.castep文件。
单击为结构分配温度因子Assign temperature factors to structure按钮。
此操作向每个原子添加有关各向异性温度因子的信息。可以使用Properties Explorer查看这些值。本教程中产生的B因子值为0.545 Å2,与实验结果非常一致(介于0.52和0.55 Å2之间)。
要将温度系数可视化为椭球体,打开Display Style对话框的温度因子Temperature Factor选项卡,然后单击Add按钮。即已显示了椭球体,但它们可能会被倒易空间对象遮挡。通过在Display Style对话框Reciprocal选项卡上取消勾选显示倒易晶格Display reciprocal lattice复选框,可以隐藏倒易空间对象。
本教程到此结束。
参考文献
Flubacher, P.; Leadbetter, A. J.; Morrison, J. A. "The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra", Phil. Mag., 4, 273-294 (1959).
【系列教程】
Adsorption Locator模块——定位SO2分子在Ni(111)表面的吸附位置【1】
Amorphous Cell模块——演示如何将分子填充到现有结构中【1】
CASTEP模块——利用第一性原理预测AlAs的晶胞参数【1】
Materials Studio是久负盛名计算模拟软件,问世20余年来,经过不断地迭代优化,使其功能异常强大,极易上手,初学者只需通过简单的参数设置和点击鼠标就能完成DFT计算。其计算可靠性久经考验,备受Nature、Science等顶级期刊认可。
华算科技和Materials Studio官方代理深圳浦华系统联合推出Materials Studio建模、计算、分析课程。课程专为零基础学员设计,沿着理论讲解、模型搭建、性质计算、结果分析层层递进讲解,带你快速入门DFT计算。课程极度注重实操,全程线上直播,提供无限回放,课程群在线答疑。(详情点击下方图片跳转)
识别下方二维码报名,或者联系手机13005427160。
1/1 | 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅梺鍝勭▉閸樿偐绮堥崼鐔稿弿婵妫楅崝锕傛煥濠靛棭妲哥紒鐘烘珪娣囧﹪濡堕崪鍐╂暰闂佸搫鎷戠紞浣割潖閾忚宕夐柕濞垮劜閻濄垽姊洪悷鏉挎闁瑰嚖鎷�:3 | 濠电姷鏁告慨鐑姐€傞挊澹╋綁宕ㄩ弶鎴狅紱闂佽宕樺▔娑氭閵堝憘鏃堟晲閸涱厽娈查梺绋款儏椤戝寮婚敐鍛傜喎鈻庨幆褎顔勯柡澶嗘櫆缁诲牆顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹 | 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎电ǹ濡介梺鍝勬噺缁诲牓寮婚妸銉㈡斀闁糕剝锚缁愭盯姊洪崨濠庢畷鐎光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢宥嗘綇閵娧呯厑缂備礁鍊哥粔鎾偑娴兼潙閱囬柣鏂挎惈瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷 | 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎垫瓕绐楅梺杞扮鐎氫即寮诲☉銏犲嵆闁靛ǹ鍎辩粻濠氭⒑閸涘⿴娈曠€光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢宥嗘綇閵娧呯厑缂備礁鍊哥粔鎾偑娴兼潙閱囬柣鏂挎惈瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷 | 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曟繝鐢靛Т閿曘倝鎮ч崱娆忣棜閻犲洦绁撮弨浠嬫煟濡搫绾ч柟鍏煎姈濞艰鈹戠€n偀鎷洪柣鐘充航閸斿苯鈻嶉幇鐗堢厵闁告垯鍊栫€氾拷 | 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柛顭戝亝閸欏繘鏌熺紒銏犳灈缂佺姾顫夐妵鍕箛閸洘顎嶉梺绋款儛娴滎亪寮诲☉銏犖ㄦい鏂垮綖濮规鎮峰⿰鍛暭閻㈩垱顨婂鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷� |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-3-19 05:24
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社