||
如何提高金属的强韧性等力学性能是金属结构材料领域的研究主题之一。将陶瓷颗粒(如碳化物、硼化物、氮化物、氧化物)加入金属材料以提高其强度,已经有几十年历史。其作用机制大体分为两类:一是陶瓷颗粒(如SiC)作为增强体,基于载荷传递、Orowan机制等直接起到强化作用,这类称为成为陶瓷颗粒增强金属基复合材料,陶瓷含量通常在1%以上。二是陶瓷颗粒通过促进基体形核或钉扎作用,影响微观组织,进而影响材料性能。TiC、TiB2颗粒可以作为铝凝固形核的异质核心,细化铝合金铸态晶粒。
我们提出一种方法,通过添加少量原位内生纳米陶瓷颗粒大幅提高铸造铝合金的力学性能。以铸造铝合金ZL205A(Al-Cu合金)为例,将少量纳米尺寸(平均直径100nm)的TiC颗粒加入铝熔体,得到的铸造合金不仅晶粒细化,而且T6热处理(固溶时效)后屈服强度、抗拉强度和伸长率均显著提高。相比于微米颗粒,纳米颗粒具有更好的强韧化效果,如表1所示。除了同时提高室温拉伸强韧性,添加TiC纳米颗粒的铝合金还具有更好的低温强韧性、高温强韧性、高温蠕变抗力、疲劳强度及耐磨性等(详见相关论文)。特别是相比其它铸造铝合金,纳米TiC/Al-Cu合金的强韧性和疲劳性能十分突出,如图1所示。
表1. 添加微米(平均直径1.9μm)、纳米尺寸(平均直径100nm)TiC颗粒的ZL205A合金室温与高温拉伸性能。
室温 | 220ºC | |||
抗拉强度,MPa | 断裂应变,% | 抗拉强度,MPa | 断裂应变,% | |
ZL205A | 472 | 7.5 | 241 | 6.2 |
+1.0%微米颗粒 | 527 | 13.4 | 279 | 10.6 |
+0.1%纳米颗粒 | 515 | 11.9 | 254 | 17.9 |
+0.3%纳米颗粒 | 530 | 16.0 | 283 | 11.9 |
图1. 添加纳米TiC的ZL205A合金与文献报道的其它铸造铝合金的力学性能比较。(a)抗拉强度与均匀伸长率;(b)疲劳强度与抗拉强度。
TiC纳米颗粒之所以有如此显著的强韧化效果,其作用机制主要是三方面:一是TiC纳米颗粒促进铝的异质形核,细化晶粒和第二相,减少微孔缺陷,因而显著提高塑性韧性。二是晶粒细化能减轻微观偏析,促进时效析出相细化,增强了析出强化作用。三是纳米颗粒本身通过Orowan机制阻碍位错运动,提高强度。
以往添加陶瓷颗粒,一般是外加陶瓷颗粒粉末或预制体。但由于陶瓷颗粒与金属的润湿性不好,以及颗粒表面易氧化或污染,会影响颗粒分散及其作用效果。另一类方法是原位内生陶瓷颗粒。孕育剂Al-Ti-B、Al-Ti-C中就是内生TiC、TiB2颗粒。但熔炼法难以控制生成的颗粒尺寸,还容易生成其它产物。我们采用原位内生TiC、TiB2颗粒,可以避免外加颗粒的表面污染问题,分散性更好。
相关论文如下:
1.Yang C, Zhao Q, Zhang Z, et al. Nanoparticle additions promote outstanding fracture toughness and fatigue strength in a cast Al–Cu alloy. Mater Des. 2020;186:108221. https://doi.org/10.1016/j.matdes.2019.108221
2.Tian W-S, Zhao Q-L, Geng R, Qiu F, Jiang Q-C. Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp. Mater Sci Eng A. 2018;713(December 2017):190–194. https://doi.org/10.1016/j.msea.2017.12.071
3.Tian W-S, Zhao Q-L, Zhang Q-Q, Qiu F, Jiang Q-C. Enhanced strength and ductility at room and elevated temperatures of Al-Cu alloy matrix composites reinforced with bimodal-sized TiC p compared with monomodal–sized TiC p. Mater Sci Eng A. 2018;724(March):368–375. https://doi.org/10.1016/j.msea.2018.03.106
4.Tian W-S, Zhao Q-L, Zhang Q-Q, Qiu F, Jiang Q-C. Simultaneously increasing the high-temperature tensile strength and ductility of nano-sized TiC p reinforced Al-Cu matrix composites. Mater Sci Eng A. 2018;717:105–112. https://doi.org/10.1016/j.msea.2018.01.069
5.Tian W-S, Zhao Q-L, Zhang Q-Q, Qiu F, Jiang Q-C. Superior creep resistance of 0.3 wt.% nano-sized TiC p /Al-Cu composite. Mater Sci Eng A. 2017;700(May):42–48. https://doi.org/10.1016/j.msea.2017.05.101
6.Tian W-S, Zhao Q-L, Zhao C-J, Qiu F, Jiang Q-C. The Dry Sliding Wear Properties of Nano-Sized TiCp/Al-Cu Composites at Elevated Temperatures. Materials (Basel). 2017;10(8):939. https://doi.org/10.3390/ma10080939
7.Zhao Q-L, Zhang Q-Q, Zhang W, Qiu F, Jiang Q-C. Improved ductility and toughness of an Al-Cu casting alloy by changing the geometrical morphology of dendritic grains. Mater Lett. 2018;214:276–279. https://doi.org/10.1016/j.matlet.2017.12.037
8. Geng R, Tian W-S, Zhao Q-L, Qiu F, Jiang Q-C. Superior Cryogenic Tensile Strength and Ductility of In Situ Al-Cu Matrix Composite Reinforced with 0.3 wt% Nano-Sized TiCp. Adv Eng Mater. 2018;20(7):1701137. https://doi.org/10.1002/adem.201701137
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 07:16
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社