||
1956年华南农科院黄耀祥院士培育成功第一个矮秆水稻品种“广场矮”,矮秆品种的培育和推广是第一次“绿色革命”的标志,使得中国和东南亚水稻产量得到大幅度提升,然而,也导致化肥的大量使用,造成环境和水体的污染。第一次绿色革命的遗传基础是赤霉素合成关键基因GA20氧化酶(SD1)的突变。
随着基因组学的发展,如何通过解析水稻营养高效利用的分子基础,利用现代技术,培育“少施化肥,少打农药,节水抗旱,优质高产”的设计型作物水稻新品种,开启新的绿色革命!这是我们研究团队的新使命!
团队始终把教书育人作为最核心目标,不断完善教育理念。在科研上,倡导“快乐科学 (Happy Science)”理念,以兴趣为导向,激发科研人员积极性和主动性,并将基础研究和应用实践相结合。
我们的理念 “building a stage for each dreamer!”
你带着梦想而来,我们亦师亦友,携手前行,在你离开的时候,人们会发现一个全新的你!
让我们带着梦想一起成长!
储成才教授回国后,在包括 Nature, Nature Biotechnology, Nature Genetics, Nature Plants, Nature Communications, Cell Research, Molecular Plant, Genome Research, PNAS, Plant Cell 等刊物发表通讯或共同通讯作者论文 100多篇,总引用15400多次 (Google Schloar 数据),2019、2020、2021年连续3年入选Clarivate Analytics(科睿唯安)“全球高被引科学家”; 多次应邀在 Nature Plants, Trends in Plant Science, Molecular Plant, New Phytologist, Journal of Experimental Botany 等杂志撰写综述、趋势和评论;申请专利 70 多项,其中国际专利 10 项,与育种单位合作培育水稻新品种 5 个,其中秀水114和秀水134累积推广面积 1400多万亩。欢迎优秀青年科学工作者加入团队。
一、应聘条件
1、热爱科研,具有高度责任心和团队精神,勇于探索,敢于创新。
2、具有农学、遗传学、分子生物学、生物信息学或相关学科博士学位,有植物营养、生物信息学分析相关领域研究经验者优先考虑。
3、具有很强的科研能力,能够独立完成相关研究课题。
4、具有较好的英语听说能力,能熟练阅读专业文献,并具有较强的中英文写作能力,在国际期刊以主要作者身份发表过研究论文者优先考虑。
二、材料投递
有意者请将简历、研究工作经历、发表论文情况及代表性论文PDF、2-3位推荐人的姓名及电话号码)发至: ccchu@scau.edu.cn。收到材料后,我们将尽快与你联系。
招聘启事长期有效,实验室对优秀人才永远敞开大门!
三、薪酬福利
博士后基础年薪20-30万(参见 华南农业大学博士后招聘启事.pdf),出站后优秀者可留校任教。
团队近年代表性论文及第三方评价(*Corresponding authors):
1. Liu Y#, Wang H#, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B*, and Chu C* (2021) Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590: 600-605.
Highlighted by Wei Li (2021) Adaptation to Nitrogen. Nature Genetics. 53(2): 127.
Spotlighted by Bing Wang and Jiayang Li (2021) Rice Geographic Adaption to Poor Soil: Novel Insight in Sustainable Agriculture. Molecular Plant. 14: 369-371.
Featured by Alisdair Fernie (2021) Using landrace transcription factor alleles to increase yield in modern rice under low input agriculture. Journal of Plant Physiology. 258-259: 153362.
Commented by Xianran Li and Jianming Yu (2021) Retrofitting elites with ancestral alleles for sustainable agriculture. Science China Life Sciences. 64(6):1029-1030.
Mini-reviewed by Fanmiao Wang, Hideki Yashida, and Makoto Matsuoka (2021) Making the “Green Revolution” Truly Green: improving crop nitrogen use efficiency. Plant and Cell Physiology. 62(6): 942-947.
热点评述: 宣伟, 徐国华. 植物适应土壤氮素环境的基因选择: 以水稻为例. 植物学报. 56(1)(2021), 1-5.
Selected by F1000Prime by Jian Feng Ma, Jiming Jiang.
2. Zhang Z#, Li Z#, Wang W, Jiang Z, Guo L, Wang X, Qian Y, Huang X, Liu Y, Liu X, Qiu Y, Li A, Yan Y, Xie J, Kopriva S, Li L, Kong F, Li B, Wang Y, Hu B*, and Chu C* (2021) Modulation of Nitrate-Induced Phosphate Response by the MYB Transcription Factor RLI1/HINGE1 in the Nucleus. Mol. Plant 14(3): 517-529
3. Wang X#, Feng C#, Tian L#, Hou C, Tian W, Hu B, Zhang Q, Ren Z, Niu Q, Song J, Kong D, Liu L, He Y, Ma L, Chu C*, Luan S*, Li L* (2021) A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. Mol. Plant. 14(5): 774-786.
Spotlighted by Cheng-Wu Liu* and Shutang Tan (2021) Nitrate Signaling: A Translator between Nitrate Perception and Calcium Signaling. Molecular Plant. 14(5): 774-786.
4. Fang J^*, Zhang F^, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang X, Zhang Y, Zhu X, Han B, Deng X*, and Chu C* (2019) Ef-cd locus shortens rice maturity duration without yield penalty. Proc. Natl. Acad. Sci. USA 116(37): 18717-18722.
Highlighted in in this issue (2019) Rice maturity time and yield. Proc. Natl. Acad. Sci. USA 116(37): 18149-18151.
Spotlighted by Yang Y and Qian Q (2019) Rice breeding: A long noncoding locus with great potential. Mol. Plant 12(11): 1431-1433.
Featured by Zhang S and Wu C (2019) Long non-coding RNA Ef-cd regulates rice early maturation and stable yield. Chin. Bull. Bot. 54(5): 550-553.
5. Zhang J^, Liu Y-X^, Zhang N^, Hu B^, Jin T^, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C*, and Bai Y* (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37: 676-684.
Cover story.
Featured by Wang X and Wang E (2019) NRT1.1B connects root microbiota and nitrogen use in rice. Chin. Bull. Bot. 54(3): 285-287.
6. Hu B^*, Jiang Z^, Wang W^, Qiu Y^, Zhang Z, Liu Y, Gao X, Liu L, Qian Y, Huang X, Yu F, Li A, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, and Chu C* (2019) Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants. Nat. Plants 5: 401–413.
Featured by Carrión C & Paz-Ares J (2019) When nitrate and phosphate sensors meet. Nat. Plants 5: 339–340.
Recommended by F1000Prime twice. Doi: 10.3410/f.735399180.793560575 and Doi: 10.3410/f.735399180.793560581.
7. Wang M^, Li W^, Fang C^, Xu F^, Liu Y^, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SC*, Chu C* & Tian Z* (2018) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50(10): 1435-1441.
Featured by Rendón-Anaya M and Herrera-Estrella A (2018) The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biol. 19(1): 147.
Highlighted by Wei X and Huang X (2018) Identification of a seed dormancy gene in soybean sheds light on crop domestication. Sci. China-Life Sci. 61(11): 1439-1441.
8. Liu C^, Ou S^, Mao B, Tang J, Wang W, Wang H, Cao S, Schlappi MR, Zhao B, Xiao G, Wang X* and Chu C* (2018) Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat. Commun. 9(1): 3302.
9. Wang W^, Hu B^, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang Y, Zhang L, Li L, Mergen S, Jing H, Li J, and Chu C* (2018) Expression of the nitrate transporter OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30(3): 638-651.
Featured by Mach J (2018) The Real Yield Deal? Nitrate Transporter Expression Boosts Yield and Accelerates Maturation. Plant Cell 30(3): 520-521.
Highlighted in Science Daily on February 23, 2018 by Mach J: New approach to improve nitrogen use, enhance yield, and promote flowering in rice.
Recommended by F1000Prime Doi: 10.3410/f.732773314.793543251.
10. Zhang B^, Zhang L^, Li F^, Zhang D, Liu X, Wang H, Xu Z, Chu C*, Zhou Y* (2017) Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nat. Plants 3: 17017.
Featured by Scheller HV (2017) Plant cell wall: Never too much acetate. Nat. Plants 3: 17024.
11. Wang H, Vieira FG, Crawford JE, Chu C*, and Nielsen R*(2017) Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 27: 1029-1038.
Cover Story.
Highlighted in Asian Scientist Magazine on May 2, 2017: Apparently, Asian wild rice isn’t so wild anymore.
12. Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R*, and Chu C* (2016) The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication. Mol. Plant 9(7):975-985
Cover Story.
Featured by Huang X (2016) From genetic mapping to molecular breeding: Genomics have paved the highway. Mol. Plant 9(7): 959-960.
13. Gao S, Fang J, Xu F, Wang W, Chu C* (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 28(3): 680-695.
Highlighted in Science Daily on April 1, 2016 by Jennifer Lockhart: Feeding the world: Uncovering a key regulator of flower head development in rice.
14. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M*, Chu C* (2016) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2: 15195.
Featured by Tsukaya H (2016) Yield increase: GRFs provide the key. Nat. Plants 2: 15210.
15. Liu L^, Tong H^, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J*, Chu C* (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. USA 112(35): 11102-11107.
16. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C* (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47(7): 834-838.
Featured by Chao DY & Lin HX (2015) Nitrogen-use efficiency: Transport solution in rice variations. Nat. Plants 1: 15096.
Highlighted by Chen ZC & Ma JF (2015) Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B. J. Genet. Genomics. 42(9): 463-465.
Highlighted by Duan D & Zhang H (2015) A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Sci. China Life Sci. 58(8): 827-828.
Recommended by F1000 Prime. Doi: 10.3410/f.725540326.793508312.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-23 14:39
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社